Structural adaptation of endonuclease I from the cold-adapted and halophilic bacterium Vibrio salmonicida.

Acta Crystallogr D Biol Crystallogr

Norwegian Structural Biology Centre, Faculty of Science, University of Tromsø, N-9037 Tromsø, Norway.

Published: April 2008

The crystal structure of the periplasmic/extracellular endonuclease I from Vibrio salmonicida has been solved to 1.5 A resolution and, in comparison to the corresponding endonucleases from V. cholerae and V. vulnificus, serves as a model system for the investigation of the structural determinants involved in the temperature and NaCl adaptation of this enzyme class. The overall fold of the three enzymes is essentially similar, but the V. salmonicida endonuclease displays a significantly more positive surface potential than the other two enzymes owing to the presence of ten more Lys residues. However, if the optimum salt concentrations for the V. salmonicida and V. cholerae enzymes are taken into consideration in the electrostatic surface-potential calculation, the potentials of the two enzymes become surprisingly similar. The higher number of basic residues in the V. salmonicida protein is therefore likely to be a result, at least in part, of adaptation to the more saline habitat of V. salmonicida (seawater) than V. cholerae (brackish water). The hydrophobic core of all three enzymes is almost identical, but the V. salmonicida endonuclease has a slightly lower number of internal hydrogen bonds. This, together with repulsive forces between the basic residues on the protein surface of V. salmonicida endonuclease I and differences in the distribution of salt bridges, probably results in higher flexibility of regions of the V. salmonicida protein. This is likely to influence both the catalytic activity and the stability of the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444908000097DOI Listing

Publication Analysis

Top Keywords

salmonicida endonuclease
12
salmonicida
9
vibrio salmonicida
8
three enzymes
8
basic residues
8
salmonicida protein
8
endonuclease
5
enzymes
5
structural adaptation
4
adaptation endonuclease
4

Similar Publications

Purpose: The taxonomy of Aeromonas keeps expanding and their identification remains problematic due to their phenotypic and genotypic heterogeneity. In this study, we aimed to develop a rapid and reliable polymerase chain reaction-restriction fragment length polymorphism assay targeting the rpoD gene to enable the differentiation of aeromonads into 27 distinct species using microfluidic capillary electrophoresis.

Methodology: A pair of degenerate primers (Aero F: 5'-YGARATCGAYATCGCCAARCGB-3' and Aero R: 5'-GRCCDATGCTCATRCGRCGGTT-3') was designed that amplified the rpoD gene of 27 Aeromonas species.

View Article and Find Full Text PDF

Endonuclease I is a widely distributed periplasmic or extracellular enzyme. A method for the high-level production of recombinant AsEndI (endonuclease I from Aliivibrio salmonicida) in Escherichia coli with secretion expression is investigated. The coding sequence of AsEndI gene was assembled according to the E.

View Article and Find Full Text PDF

The psychrophilic and mesophilic endonucleases A (EndA) from Aliivibrio salmonicida (VsEndA) and Vibrio cholera (VcEndA) have been studied experimentally in terms of the biophysical properties related to thermal adaptation. The analyses of their static X-ray structures was no sufficient to rationalize the determinants of their adaptive traits at the molecular level. Thus, we used Molecular Dynamics (MD) simulations to compare the two proteins and unveil their structural and dynamical differences.

View Article and Find Full Text PDF

Molecular dynamics of the salt dependence of a cold-adapted enzyme: endonuclease I.

J Biomol Struct Dyn

June 2016

a LCPM Laboratory, Faculty of Sciences, Chemistry Department , University of Oran, Oran , Algeria.

The effects of salt on the stability of globular proteins have been known for a long time. In the present investigations, we shall focus on the effect of the salt ions upon the structure and the activity of the endonuclease I enzyme. In the present work, we shall focus on the relationship between ion position and the structural features of the Vibrio salmonicida (VsEndA) enzyme.

View Article and Find Full Text PDF

Genetic insertions and diversification of the PolB-type DNA polymerase (gp43) of T4-related phages.

J Mol Biol

January 2010

Department of Biochemistry SL43, School of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.

In Escherichia coli phage T4 and many of its phylogenetic relatives, gene 43 consists of a single cistron that encodes a PolB family (PolB-type) DNA polymerase. We describe the divergence of this phage gene and its protein product (gp43) (gene product 43) among 26 phylogenetic relatives of T4 and discuss our observations in the context of diversity among the widely distributed PolB enzymes in nature. In two T4 relatives that grow in Aeromonas salmonicida phages 44RR and 25, gene 43 is fragmented by different combinations of three distinct types of DNA insertion elements: (a) a short intercistronic untranslated sequence (IC-UTS) that splits the polymerase gene into two cistrons, 43A and 43B, corresponding to N-terminal (gp43A) and C-terminal (gp43B) protein products; (b) a freestanding homing endonuclease gene (HEG) inserted between the IC-UTS and the 43B cistron; and (c) a group I intron in the 43B cistron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!