Heterologous protein production by filamentous fungi.

Biotechnol Genet Eng Rev

Agricultural and Food Research Council, Institute of Food Research, Colney, Norwich, UK.

Published: April 1992

There are clearly many facets to successful production of heterologous proteins from filamentous fungi. The objectives are to exploit the natural ability of some species to secrete high levels of protein. The heterologous target proteins produced in a fungal host must be acceptable to the public and be economic to produce, i.e. the targets must be authentic (in structure and activity) and be produced in high yield to necessary levels of purity. The appearance of heterologous products from fungi on the market is testament to some success but, equally, there are considerable limitations in our ability to produce desired yields of many target proteins. We endorse the view of van den Hondel, Punt and van Gorcom (1991) that for the commercial production of heterologous proteins from filamentous fungi more information is required on transcriptional control, introns, mRNA stability and processing, translational efficiency, protein secretion, glycosylation and proteolysis. In addition, there is scope for yield improvement based on a better understanding of the physiology of growth/product secretion coupled to appropriate bioreactor operation. The authenticity of product is an aspect which will assume increasing importance, particularly for therapeutic proteins. The level at which the structures and functional activity of heterologous proteins are assessed will ultimately be determined by legislation. The analytical methods currently available are not always sufficient, for example, to reveal folded structures, and most proteins are not amenable to analysis by two-dimensional NMR. The authenticity of target heterologous proteins will also need to be assessed in relation to the glycosylation level and pattern. This is not easily done and explains the paucity of detailed information published to date on glycosylation of fungal proteins. Novel engineered proteins are already being produced from filamentous fungi where expression is an aid to investigation of structure-function relationships. Commercial production of such engineered proteins will require approval subject to a range of stringently applied tests and analyses. This imposes an even greater need to be able to specify and control, in a rational manner, the structures of recombinant proteins. The research needs for realization of improved yields are equally important in assuring authenticity of product. It is encouraging that progress is being made on all fronts, primarily with Aspergillus spp. and T. reesei, but also with other species, such as N. crassa.

Download full-text PDF

Source

Publication Analysis

Top Keywords

filamentous fungi
16
heterologous proteins
16
proteins
12
production heterologous
8
proteins filamentous
8
target proteins
8
proteins produced
8
commercial production
8
authenticity product
8
proteins will
8

Similar Publications

Microbial biopesticides: A one health perspective on benefits and risks.

One Health

June 2025

Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.

Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).

View Article and Find Full Text PDF

The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.

View Article and Find Full Text PDF

The imbalanced soil nutrient status caused by the long-term monoculture of flue-cured tobacco are a concern. The tobacco-maize relay intercropping, widely used in Yunnan, may improve soil nutrients by enhancing the soil microbial community, but this remains unexplored. This study employed high-throughput sequencing technology to examine soil microbial diversity under tobacco monoculture and tobacco-maize relay intercropping, using the varieties Hongda and K326, respectively.

View Article and Find Full Text PDF

Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.

Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.

View Article and Find Full Text PDF

Most of the food packaging materials used in the market are petroleum-based plastics; such materials are neither biodegradable nor environmentally friendly and require years to decompose. To overcome these problems, biodegradable and edible materials are encouraged to be used because such materials degrade quickly due to the actions of bacteria, fungi, and other environmental effects. The present study examined that starch can be effectively used as raw material to develop biodegradable, edible films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!