An inverse relationship exists between kallistatin levels and salt-induced oxidative stress in Dahl-salt sensitive rats. We further investigated the role of kallistatin in inhibiting inflammation and fibrosis through antioxidative stress in Dahl-salt sensitive rats and cultured renal cells. High-salt intake in Dahl-salt sensitive rats induced elevation of thiobarbituric acid reactive substances (an indicator of lipid peroxidation), malondialdehyde levels, reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, and superoxide formation, whereas kallistatin gene delivery significantly reduced these oxidative stress parameters. Kallistatin treatment improved renal function and reduced kidney damage as evidenced by diminished proteinuria and serum urea nitrogen levels, glomerular sclerosis, tubular damage, and protein cast formation. Kallistatin significantly decreased interstitial monocyte-macrophage infiltration and the expression of tumor necrosis factor-alpha, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1. Kallistain also reduced collagen fraction volume and the deposition and expression of collagen types I and III. Renal protection by kallistatin was associated with increased NO levels and endothelial NO synthase expression and decreased p38 mitogen-activated protein kinase, extracellular signal-regulated kinase phosphorylation, and transforming growth factor-beta1 expression. Moreover, kallistatin attenuated tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression via inhibition of reactive oxygen species formation and p38 mitogen-activated protein kinase and nuclear factor-kappaB activation in cultured proximal tubular cells. Kallistatin inhibited fibronectin and collagen expression by suppressing angiotensin II-induced reactive oxygen species generation and transforming growth factor-beta1 expression in cultured mesangial cells. These combined findings reveal that kallistatin is a novel antioxidant, which prevents salt-induced kidney injury, inflammation, and fibrosis by inhibiting reactive oxygen species-induced proinflammatory cytokine and transforming growth factor-beta1 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.108514DOI Listing

Publication Analysis

Top Keywords

adhesion molecule-1
16
inflammation fibrosis
12
dahl-salt sensitive
12
sensitive rats
12
transforming growth
12
growth factor-beta1
12
factor-beta1 expression
12
reactive oxygen
12
kallistatin
9
injury inflammation
8

Similar Publications

Introduction: The low incidence of intradialytic hypotension (IDH) in high-volume (HV) hemodiafiltration (HDF) may help in maintaining gut perfusion during treatment. Preservation of gut endothelial integrity would limit or prevent bacterial translocation and subsequent systemic inflammation, which may contribute to the low mortality rate in HV-HDF.

Methods: Forty patients were cross-over randomized to standard (hemodialysis [HD]) (S-HD), cool HD (C-HD), and HDF (low-volume [LV] and HV, convection volume (CV) of 15 L and ≥ 23 L per session, respectively), each for 2 weeks.

View Article and Find Full Text PDF

Human PBMC-based humanized mice exhibit myositis features and serve as a drug evaluation model.

Inflamm Regen

January 2025

Oncology & Immunology Unit, Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.

Idiopathic inflammatory myopathies (IIMs) are a group of autoimmune disorders characterized by immune cell infiltration of muscle tissue accompanied by inflammation. Treatment of IIMs is challenging, with few effective therapeutic options due to the lack of appropriate models that successfully recapitulate the features of IIMs observed in humans. In the present study, we demonstrate that immunodeficient mice transplanted with human peripheral blood mononuclear cells (hPBMCs) exhibit the key pathologic features of myositis observed in humans and develop graft-versus-host disease.

View Article and Find Full Text PDF

This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.

View Article and Find Full Text PDF

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Clinical trials have shown favorable effects of exercise on frailty, supporting physical activity (PA) as a treatment and prevention strategy. Proteomics studies suggest that PA alters levels of many proteins, some of which may function as molecules in the biological processes underlying frailty. However, these studies have focused on structured exercise programs or cross-sectional PA-protein associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!