Immune recognition of Streptococcus pyogenes by dendritic cells.

Infect Immun

Infection Immunology Research Group, Department of Microbial Pathogenesis, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.

Published: June 2008

Streptococcus pyogenes is one of the most frequent human pathogens. Recent studies have identified dendritic cells (DCs) as important contributors to host defense against S. pyogenes. The objective of this study was to identify the receptors involved in immune recognition of S. pyogenes by DCs. To determine whether Toll-like receptors (TLRs) were involved in DC sensing of S. pyogenes, we evaluated the response of bone marrow-derived DCs obtained from mice deficient in MyD88, an adapter molecule used by almost all TLRs, following S. pyogenes stimulation. Despite the fact that MyD88(-/-) DCs did not differ from wild-type DCs in the ability to internalize and kill S. pyogenes, the up-regulation of maturation markers, such as CD40, CD80, and CD86, and the production of inflammatory cytokines, such as interleukin-12 (IL-12), IL-6, and tumor necrosis factor alpha, were dramatically impaired in S. pyogenes-stimulated MyD88(-/-) DCs. These results suggest that signaling through TLRs is the principal pathway by which DCs sense S. pyogenes and become activated. Surprisingly, DCs deficient in signaling through each of the TLRs reported as potential receptors for gram-positive cell components, such as TLR1, TLR2, TLR4, TLR9, and TLR2/6, were not impaired in the secretion of proinflammatory cytokines and the up-regulation of costimulatory molecules after S. pyogenes stimulation. In conclusion, our results exclude a major involvement of a single TLR or the heterodimer TLR2/6 in S. pyogenes sensing by DCs and argue for a multimodal recognition in which a combination of several different TLR-mediated signals is essential for a rapid and effective response to the pathogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423069PMC
http://dx.doi.org/10.1128/IAI.01680-07DOI Listing

Publication Analysis

Top Keywords

pyogenes
10
dcs
9
immune recognition
8
streptococcus pyogenes
8
dendritic cells
8
pyogenes stimulation
8
myd88-/- dcs
8
signaling tlrs
8
recognition streptococcus
4
pyogenes dendritic
4

Similar Publications

A Chain of Events Leading to Posttraumatic Subacute Meningitis.

Am J Forensic Med Pathol

January 2025

County of Santa Clara, Medical Examiner-Coroner Office, San Jose, CA.

There are few reports that discuss the nebulous entity known as posttraumatic subacute meningitis. Herein, we describe a case where a male was found deceased with Streptococcus pyogenes meningitis 7 days after experiencing head trauma inflicted with a tow chain. Computed tomography scan prior to death revealed a scalp laceration with subcutaneous gas and a subdural hematoma.

View Article and Find Full Text PDF

Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.

View Article and Find Full Text PDF

Objective: Periorbital necrotizing soft tissue infection (NSTI) is a rare entity caused either by polymicrobial infection (type 1) or Streptococcus pyogenes and/or Staphylococcus species (type 2). A high level of clinical suspicion is necessary to make the diagnosis. We present 3 cases of NSTI illustrating our diagnostic and therapeutic approach.

View Article and Find Full Text PDF

[Accumulation of severe Streptococcus pyogenes infections among children admitted to the pediatric department of a county hospital].

Orv Hetil

January 2025

1 Bács-Kiskun Vármegyei Oktatókórház, Csecsemő- és Gyermekgyógyászati Osztály Kecskemét, Nyíri út 38., 6000 Magyarország.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!