Recent evidence suggests that dysfunctional type II alveolar epithelial cells (AECs) contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Based on the hypothesis that disease-causing mutations in surfactant protein C (SFTPC) provide an important paradigm for studying IPF, we investigated a potential mechanism of AEC dysfunction suggested to result from mutant SFTPC expression: induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We evaluated biopsies from 23 IPF patients (including 3 family members with L188Q SFTPC mutations, 10 individuals with familial interstitial pneumonia without SFTPC mutations, and 10 individuals with sporadic IPF) and sections from 10 control lungs. After demonstrating UPR activation in cultured A549 cells expressing mutant SFTPC, we identified prominent expression of UPR markers in AECs in the lungs of patients with SFTPC mutation-associated fibrosis. In individuals with familial interstitial pneumonia without SFTPC mutations and patients with sporadic IPF, we also found UPR activation selectively in AECs lining areas of fibrotic remodeling. Because herpesviruses are found frequently in IPF lungs and can induce ER stress, we investigated expression of viral proteins in lung biopsies. Herpesvirus protein expression was found in AECs from 15/23 IPF patients and colocalized with UPR markers in AECs from these patients. ER stress and UPR activation are found in the alveolar epithelium in patients with IPF and could contribute to disease progression. Activation of these pathways may result from altered surfactant protein processing or chronic herpesvirus infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00382.2007 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Department of Applied Chemistry, Providence University.
Adding of vegetable oils to skincare products or the use of plant oils for oil care is a current trend. Therefore, the safety and functionality of vegetable oils are of great concern to consumers and cosmetics manufacturers. This study focused on three types of vegetable oils: sunflower oil (SO), andiroba oil (AO) and hydrogenated olive oil (HOO).
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, AvInstituto Politécnico Nacional 2508, Col San Pedro ZacatencoCDMX, C.P. 07360, Mexico City, Mexico.
Fluoride is emitted into the air not only through gas emissions but also from volcanic ash, leading to contact via inhalation. Therefore, the objective of the present study was to evaluate the cellular and biochemical responses in the A549 cell line after exposure to NaF (sodium fluoride) concentrations lower than those previously used in other studies to determine the impact on the lung epithelium. A549 cells were exposed to different concentrations (0.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.
Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!