AI Article Synopsis

  • Doxorubicin, an anticancer drug, negatively affects calcium (Ca2+) functions in heart cells, contributing to its cardiotoxicity.
  • Mitoxantrone, another anticancer agent, shows less cardiotoxicity and enhances Ca2+ release in heart muscle experiments performed on guinea pigs.
  • Research findings indicate that mitoxantrone improves sarcoplasmic reticulum functions, unlike doxorubicin, which may explain its lower risk of heart-related side effects.

Article Abstract

We reported previously that doxorubicin, an anticancer agent that has an anthracycline structure, alters Ca2+ releasing and uptake mechanisms in the sarcoplasmic reticulum of myocardial cells. These effects of doxorubicin are apparently related to its cardiotoxicity. Mitoxantrone is a similar anticancer agent with an anthracenedion structure that has been shown to be significantly less cardiotoxic. In the present study, the effects of mitoxantrone on the functions of the sarcoplasmic reticulum were examined in isolated muscle preparations obtained from the guinea-pig heart. In electrically-stimulated left atrial muscle preparations, incubation in vitro for 4 hr with 30 or 100 microM mitoxantrone significantly prolonged the time to the peak of twitch tension, markedly increased the developed tension observed at lower stimulation frequencies, thereby attenuating the slope of positive force-frequency relationships, and increased the postrest contraction observed after a 60-sec quiescent period. In myocytes isolated from ventricular muscles, 30 microM mitoxantrone increased the peak and the size of intracellular Ca2+ concentrations ([Ca2+] i), and prolonged the time to peak [Ca2+]i. In skinned muscle fiber preparations obtained from the left ventricular muscle, 30 muM mitoxantrone significantly increased the caffeine-induced contraction without affecting the Ca2+ sensitivity of contractile proteins. These results suggest that mitoxantrone enhances Ca2+ release from the sarcoplasmic reticulum in isolated atrial muscle preparations obtained from the guinea-pig heart. Apparent enhancement of the sarcoplasmic reticulum functions, in contrast to anthracyclines that has been shown to suppress these functions, seems to explain the relative lack of marked cardiotoxicity of mitoxantrone.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.70.255DOI Listing

Publication Analysis

Top Keywords

sarcoplasmic reticulum
16
cardiotoxicity mitoxantrone
12
guinea-pig heart
12
muscle preparations
12
mitoxantrone
8
examined isolated
8
anticancer agent
8
preparations guinea-pig
8
atrial muscle
8
microm mitoxantrone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!