Many painful conditions occur more frequently in women, and estrogen is a predisposing factor. Estrogen may contribute to some pain syndromes by enhancing axon outgrowth by sensory dorsal root ganglion (DRG) neurons. The objective of the present study was to define mechanisms by which estrogen elicits axon sprouting. The estrogen receptor-alpha agonist propyl pyrazole triol induced neurite outgrowth from cultured neonatal DRG neurons, whereas the estrogen receptor-beta agonist diarylpropionitrile was ineffective. 17beta-Estradiol (E2) elicited sprouting from peripherin-positive unmyelinated neurons, but not larger NF200-positive myelinated neurons. Microarray analysis showed that E2 up-regulates angiotensin II (ANGII) receptor type 2 (AT2) mRNA in vitro, and studies in adult rats confirmed increased DRG mRNA and protein in vivo. AT2 plays a central role in E2-induced axon sprouting because AT2 blockade by PD123,319 eliminated estrogen-mediated sprouting in vitro. We assessed whether AT2 may be responding to locally synthesized ANGII. DRG from adult rats expressed mRNA for renin, angiotensinogen, and angiotensin converting enzyme (ACE), and protein products were present and occasionally colocalized within neurons and other DRG cells. We determined if locally synthesized ANGII plays a role in estrogen-mediated sprouting by blocking its formation using the ACE inhibitor enalapril. ACE inhibition prevented estrogen-induced neuritogenesis. These findings support the hypothesis that estrogen promotes DRG nociceptor axon sprouting by up-regulating the AT2 receptor, and that locally synthesized ANGII can induce axon formation. Therefore, estrogen may contribute to some pain syndromes by enhancing the pro-neuritogenic effects of AT2 activation by ANGII.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453086 | PMC |
http://dx.doi.org/10.1210/en.2008-0061 | DOI Listing |
J Exerc Rehabil
December 2024
Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea.
The purpose of this study was to investigate the effects of weight- and non-weight-bearing exercises on the Basso-Beattie-Bresnahan (BBB) locomotor rating scale, corticospinal axon regrowth and regeneration-related proteins following spinal cord injury (SCI). Twenty-four male Sprague-Dawley rats were randomly divided into four groups: control group (n=6), SCI+sedentary group (SED, n=6), SCI+treadmill exercise group (TREAD, n=6), and SCI+swimming exercise group (SWIM, n=6). All rats in the SCI group were given the rest for 2 weeks after SCI, and then they were allowed to engage in low-intensity exercise for 6 weeks on treadmill device.
View Article and Find Full Text PDFJ Reconstr Microsurg
December 2024
Division of Reconstructive Microsurgery Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
Background: High-level median or ulnar nerve injuries and repairs typically result in suboptimal re-innervation of distal muscles. Functioning Free Muscle Transplantation (FFMT) is increasingly recognized as an effective method to restore function in chronic muscle denervation cases. This study investigates the efficacy of using an additional FFMT, neurotized by lateral sprouting axons from a repaired high-level mixed nerve in the upper limb, to enhance distal hand function.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFeNeuro
January 2025
Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury.
View Article and Find Full Text PDFMol Metab
December 2024
Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. Electronic address:
Objective: Antagonism of the muscarinic acetylcholine type 1 receptor (MR) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in MR antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity.
Methods: Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and MR antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!