AI Article Synopsis

  • Wolbachia pipientis are bacteria that manipulate the reproductive systems of their host insects to improve their transmission, acting as reproductive parasites.* -
  • The study focused on the protein alpha-DsbA1, which is believed to play a role in stabilizing other proteins through disulfide bonding, and was successfully cloned, expressed, and purified from E. coli.* -
  • Findings revealed that alpha-DsbA1 functions as an oxidant rather than an isomerase, providing insights into its role and paving the way for future studies on its protein interactions and structural properties.*

Article Abstract

Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to contain disulfide bonds to stabilize the protein structure. In bacteria, the introduction or isomerization of disulfide bonds in proteins is catalyzed by Dsb proteins. The Wolbachia genome encodes two proteins, alpha-DsbA1 and alpha-DsbA2, that might catalyze these steps. In this work we focussed on the 234 residue protein alpha-DsbA1; the gene was cloned and expressed in Escherichia coli, the protein was purified and its identity confirmed by mass spectrometry. The sequence identity of alpha-DsbA1 for both dithiol oxidants (E. coli DsbA, 12%) and disulfide isomerases (E. coli DsbC, 14%) is similar. We therefore sought to establish whether alpha-DsbA1 is an oxidant or an isomerase based on functional activity. The purified alpha-DsbA1 was active in an oxidoreductase assay but had little isomerase activity, indicating that alpha-DsbA1 is DsbA-like rather than DsbC-like. This work represents the first successful example of the characterization of a recombinant Wolbachia protein. Purified alpha-DsbA1 will now be used in further functional studies to identify protein substrates that could help explain the molecular basis for the unusual Wolbachia phenotypes, and in structural studies to explore its relationship to other disulfide oxidoreductase proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2008.02.008DOI Listing

Publication Analysis

Top Keywords

wolbachia pipientis
8
disulfide bonds
8
protein purified
8
purified alpha-dsba1
8
alpha-dsba1
7
protein
6
wolbachia
6
proteins
5
cloning expression
4
expression purification
4

Similar Publications

Background: Dengue remains a global health challenge with limited treatment options, highlighting the need for effective vector control strategies. The introduction of Wolbachia pipientis into Aedes aegypti populations has shown success in reducing dengue transmission across global field trials. However, the spillover effectiveness of the technology on untreated areas is not well-known.

View Article and Find Full Text PDF

Aphids harbor nine common facultative symbionts, most mediating one or more ecological interactions. Wolbachia pipientis, well-studied in other arthropods, remains poorly characterized in aphids. In Pentalonia nigronervosa and P.

View Article and Find Full Text PDF

Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria.

Adv Exp Med Biol

November 2024

Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.

Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster.

View Article and Find Full Text PDF

Release of Aedes aegypti mosquitoes infected with Wolbachia pipientis (wMel strain) is a biocontrol approach against Ae. aegypti-transmitted arboviruses. The Applying Wolbachia to Eliminate Dengue (AWED) cluster-randomised trial was conducted in Yogyakarta, Indonesia in 2018-2020 and provided pivotal evidence for the efficacy of wMel-Ae.

View Article and Find Full Text PDF

Interactions between a host organism and its associated microbiota, including symbiotic bacteria, play a crucial role in host adaptation to changing environmental conditions. Antarctica provides a unique environment for the establishment and maintenance of symbiotic relationships. One of the most extensively studied symbiotic bacteria in invertebrates is Wolbachia pipientis, which is associated with a wide variety of invertebrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!