Objectives: Our aim was to establish whether the efficacy of post-conditioning is maintained in aging hearts.

Background: Post-conditioning, or relief of myocardial ischemia in a stuttered manner, has been shown to reduce infarct size, in part because of up-regulation of survival kinases (extracellular-signal regulated kinase [ERK] 1/2 or PI3-kinase/Akt) during the early min of reperfusion. All of these data have, however, been obtained in adult populations; the question of whether post-conditioning-induced cardioprotection is maintained in aging cohorts is unknown.

Methods: Isolated buffer-perfused hearts were obtained from 3- to 4-month-old (adult) and 20- to 24-month-old C57BL/6J mice and subjected to 30 min of ischemia. For each cohort, hearts were randomized to receive standard, abrupt (control) reperfusion, or were post-conditioned with 3 or 6 10-s cycles of stuttered reflow. Primary end points were infarct size, cardiac expression of phospho-Akt, phospho-mitogen-activated protein kinase kinase 1/2 and phospho-ERK 1/2, and expression of mitogen-activated protein kinase-phosphatase-1 (MKP-1: phosphatase purported to play a primary role in ERK dephosphorylation).

Results: In adult mouse hearts, post-conditioning significantly reduced infarct size via up-regulation of ERK (but not Akt) signaling. In contrast, in the 2-year-old cohort, post-conditioning failed to limit necrosis, possibly a consequence of the deficit in ERK phosphorylation and increased MKP-1 expression seen in old hearts. Indeed, infusion of sodium orthovanadate, a nonspecific MKP inhibitor, attenuated MKP-1 expression and restored the post-conditioned phenotype in old hearts.

Conclusions: Old mouse hearts are refractory to infarct size reduction with post-conditioning, possibly because of an age-associated increase in MKP-1 and resultant deficit in ERK phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacc.2007.11.070DOI Listing

Publication Analysis

Top Keywords

infarct size
20
mouse hearts
12
hearts refractory
8
refractory infarct
8
size reduction
8
reduction post-conditioning
8
maintained aging
8
size up-regulation
8
deficit erk
8
erk phosphorylation
8

Similar Publications

Purpose: Reperfusion of the ischaemic heart is essential to limit myocardial infarction. However, reperfusion can cause cardiomyocyte hypercontracture. Recently, cardiac myosin-targeted inhibitors (CMIs), such as Mavacamten (MYK-461) and Aficamten (CK-274), have been developed to treat patients with cardiac hypercontractility.

View Article and Find Full Text PDF

Intra-arterial Alteplase Thrombolysis After Successful Thrombectomy for Acute Ischemic Stroke in the Posterior Circulation (IAT-TOP): Study Protocol and Rationale.

Int J Stroke

January 2025

Department of Neurosurgery and Interventional Neuroradiology, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, National Center for Neurological Disorders, 45 Changchun St, Beijing 100053, China.

Rationale: The Chemical Optimization of Cerebral Embolectomy (CHOICE) trial suggested that the administration of intra-arterial alteplase after successful endovascular thrombectomy (EVT) may improve neurological outcomes in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO) in the anterior circulation. However, the use of adjunctive intra-arterial alteplase following successful EVT in acute posterior circulation stroke remains unexplored.

Aims: This study aims to investigate the efficacy and safety of intra-arterial alteplase after successful EVT for AIS-LVO in the posterior circulation.

View Article and Find Full Text PDF

Background: Solid pseudopapillary neoplasms (SPNs) arising in the body or tail of the pancreas can be amenable to laparoscopic distal pancreatectomy with or without concomitant splenectomy. The purpose of this study was to evaluate laparoscopic distal pancreatectomy for SPN using the Warshaw technique as a means to preserve spleens in children.

Methods: We reviewed our database of SPN patients 19 years and younger (January 2006-December 2023).

View Article and Find Full Text PDF

IL-6 Promotes Muscle Atrophy by Increasing Ubiquitin-Proteasome Degradation of Muscle Regeneration Factors After Cerebral Infarction in Rats.

Neuromolecular Med

January 2025

Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.

Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.

Background: Hemoglobin A1C (A1C) is a measure of long-term glycemic control. In a previous study using a single measure of A1C, we showed that it is related to postmortem cerebrovascular pathology. Here, we use annually collected A1C data to study the relationship of A1C average and variability over time with neuropathology in a large number of older adults with and without diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!