Physical vapor deposition was employed to prepare amorphous samples of indomethacin and 1,3,5-(tris)naphthylbenzene. By depositing onto substrates held somewhat below the glass transition temperature and varying the deposition rate from 15 to 0.2 nm/s, glasses with low enthalpies and exceptional kinetic stability were prepared. Glasses with fictive temperatures that are as much as 40 K lower than those prepared by cooling the liquid can be made by vapor deposition. As compared to an ordinary glass, the most stable vapor-deposited samples moved about 40% toward the bottom of the potential energy landscape for amorphous materials. These results support the hypothesis that enhanced surface mobility allows stable glass formation by vapor deposition. A comparison of the enthalpy content of vapor-deposited glasses with aged glasses was used to evaluate the difference between bulk and surface dynamics for indomethacin; the dynamics in the top few nanometers of the glass are about 7 orders of magnitude faster than those in the bulk at Tg - 20 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp7113384DOI Listing

Publication Analysis

Top Keywords

vapor deposition
16
energy landscape
8
deposition
5
hiking energy
4
landscape progress
4
progress kauzmann
4
kauzmann temperature
4
vapor
4
temperature vapor
4
deposition physical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!