The purpose of this study was to evaluate the efficacy of titanium dioxide photocatalyst in inhibition of bacterial colonization on percutaneous implants. Titanium dioxide photocatalyst was prepared by direct oxidization of pure titanium substrate, and a comparative study with pure titanium was performed. The bactericidal ability of the photocatalyst was examined using methicillin-resistant Staphylococcus aureus (MRSA) suspensions in a colony-forming assay according to the Japanese Industrial Standards committee standard. After exposing the MRSA suspension on sample plates to ultraviolet A (UVA) light, the number of surviving bacteria was estimated. Next, an animal model for inhibition of colonization was examined in vivo. Pins were inserted into the femurs of rabbits, were infected with 10(8) colony-forming units of MRSA suspension, and were illuminated with UVA light for 60 min daily; the number of colonizing bacteria was estimated after 7 days. The bactericidal ability of the photocatalyst was apparent after 60 min, when the bacteria had almost disappeared. The number of colonizing bacteria on photocatalytic pins was decreased significantly in vivo. The photocatalyst was effective even against resistant bacterial colonization. Clinically, the incidence of percutaneous implant infection such as pin tract infection in external fixation could be reduced using the titanium photocatalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.31053DOI Listing

Publication Analysis

Top Keywords

titanium dioxide
12
dioxide photocatalyst
12
bacterial colonization
12
efficacy titanium
8
photocatalyst inhibition
8
inhibition bacterial
8
colonization percutaneous
8
percutaneous implants
8
pure titanium
8
bactericidal ability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!