Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats which code for glutamine in the HD gene product, huntingtin. Huntingtin is expressed in almost all tissues, so abnormalities outside the brain can also be expected. Involvement of nuclei and mitochondria in HD pathophysiology has been suggested. In fact mitochondrial dysfunction is reported in brains of patients suffering from HD. The tRNA gene mutations are one of hot spots that can cause mitochondrial disorders. In this study, possible mitochondrial DNA (mtDNA) damage was evaluated by screening for mutations in the tRNA(leu/lys) and ATPase 6 genes of 20 patients with HD, using PCR and automated DNA sequencing. Mutations including an A8656G mutation in one patient were observed, which may be causal to the disease. Understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could potentially be important for the development of therapeutic strategies in HD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-008-9261-6DOI Listing

Publication Analysis

Top Keywords

trnaleu/lys atpase
8
atpase genes
8
investigation trnaleu/lys
4
mutations
4
genes mutations
4
mutations huntington's
4
huntington's disease
4
disease huntington
4
huntington disease
4
disease genetically
4

Similar Publications

Background: The spinocerebellar ataxias (SCA) comprise a heterogeneous group of severe late-onset neurodegenerative diseases that are promoted by the expansion of a tandem-arrayed DNA sequence that modifies the primary structure of the protein.

Methods: Genomic DNA of 20 patients affected with SCAs was extracted from peripheral blood and screened for deletions in mitochondrial DNA (mtDNA). Sequencing of tRNA(Leu), tRNA(Lys), cytochrome oxidase II, ATPase 6/8 and NADH dehydrogenase I (NDI) genes belonging to mtDNA from patients with SCAs was also carried out to detect the presence of variations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!