The smooth pursuit eye movement (SPEM) system is much more sensitive to target motion perturbations during pursuit than during fixation. This sensitivity is commonly attributed to a dynamic gain control mechanism. Neither the neural substrate nor the functional architecture for this gain control has been fully revealed. There are at least two cortical areas that crucially contribute to smooth pursuit and are therefore eligible sites for dynamic gain control: the medial superior temporal area (MST) and the pursuit area of the frontal eye fields (FEFs), which both project to brain stem premotor structures via parallel pathways. The aim of this study was to develop a model of smooth pursuit based on behavioral, anatomical, and neurophysiological results to account for nonlinear dynamic gain control. Using a behavioral paradigm in humans consisting of a sinusoidal oscillation (4 Hz, +/-8 degrees/s) superimposed on a constant velocity target motion (0-24 degrees/s), we were able to identify relevant gain control parameters in the model. A salient feature of our model is the emergence of two parallel pathways from higher visual cortical to lower motor areas in the brain stem that correspond to the MST and FEF pathways. Detailed analysis of the model revealed that one pathway mainly carries eye velocity related signals, whereas the other is associated mostly with eye acceleration. From comparison with known neurophysiological results we conclude that the dynamic gain control can be attributed to the FEF pathway, whereas the MST pathway serves as the basic circuit for maintaining an ongoing SPEM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271660 | PMC |
http://dx.doi.org/10.1152/jn.90237.2008 | DOI Listing |
Trop Anim Health Prod
January 2025
Department of Biology, College of Science, Sultan Qaboos University, PC. 123, Muscat, Sultanate of Oman.
Bluetongue virus (BTV) has emerged as a significant concern in Oman, affecting various animal species, including camels. This cross-sectional study aimed to assess the seroprevalence of BTV in camels and explore the associated risk factors within the northern region of Oman. Between October 2016 and March 2017, 439 serum samples and 100 blood samples were collected from camels in five governorates.
View Article and Find Full Text PDFVision Res
January 2025
Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia. Electronic address:
Photic drive responses (PDRs) are used to explore cortical hyperexcitability. We quantified PDRs and interactions with the alpha rhythm in people with epilepsy (PwE). Fifteen PwE (mean age ± SD 47.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya.
Rift Valley Fever (RVF) is a zoonotic disease that affects both livestock and humans. Men and women in pastoralist communities are vulnerable to RVF risk exposure because of their different roles and reliance on livestock products. This study sought to understand how ownership and decision-making in pastoralist male and female-headed households influence coping mechanisms and resilience to Rift Valley fever (RVF), using the three resilience capacities of absorptive, adaptive, and transformative.
View Article and Find Full Text PDFMed Phys
January 2025
Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
Background: Breast cancer is the leading cause of female cancer mortality worldwide, accounting for 1 in 6 cancer deaths. Surgery, radiation, and systemic therapy are the three pillars of breast cancer treatment, with several strategies developed to combine them. The association of preoperative radiotherapy with immunotherapy may improve breast cancer tumor control by exploiting the tumor radio-induced immune priming.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande Do Sul, Brazil.
During the harvest of Ilex paraguariensis, approximately 2-5 tons per hectare of thick stems are left on the soil surface. The outer portion of these stems, referred to as the coproduct, constitutes 30% of the total residue mass. Although this coproduct has been partially characterized in terms of its phytochemical profile, its technological applications remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!