The development of dendritic arbors is critical in neuronal circuit formation, as dendrites are the primary sites of synaptic input. Morphologically specialized dendritic protrusions called spines represent the main postsynaptic compartment for excitatory neurotransmission. Recently, we demonstrated that chicken acidic leucine-rich epidermal growth factor (EGF) -like domain-containing brain protein/neuroglycan C (CALEB/NGC), a neural member of the EGF family, mediates dendritic tree and spine complexity but that the signaling pathways in the respective processes differ. For a more detailed characterization of these signal transduction pathways, we performed a yeast two-hybrid screen to identify proteins that interact with CALEB/NGC. Our results show that B56beta, a regulatory subunit of protein phosphatase 2A, interacts with CALEB/NGC and inhibits CALEB/NGC-mediated dendritic branching but not spine formation. Binding of B56beta to CALEB/NGC was confirmed by several biochemical and immunocytochemical assays. Using affinity chromatography and mass spectrometry, we demonstrate that the whole protein phosphatase 2A trimer, including structural and catalytic subunits, binds to CALEB/NGC via B56beta. We show that CALEB/NGC induces the phosphorylation of Akt in dendrites. Previously described to interfere with Akt signaling, B56beta inhibits Akt phosphorylation and Akt-dependent dendritic branching but not Akt-independent spine formation induced by CALEB/NGC. Our results contribute to a better understanding of signaling specificity leading to neuronal process differentiation in sequential developmental events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.07-096115 | DOI Listing |
Front Immunol
January 2025
Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea.
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Orthopedics, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
Dual-specificity phosphatase 3 (DUSP3) is a small-molecule dual-specificity phosphatase whose function has not yet been elucidated. This study investigated the effects of DUSP3 on the biological behavior of osteosarcoma and its potential mechanisms. We performed bioinformatics analysis of DUSP3 using "The Cancer Genome Atlas" and "The Tumor Immune Estimation Resource" databases.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The lengthy period of external fixation for bone consolidation increases the risk of complications during distraction osteogenesis (DO). Both pro-angiogenic and osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) contribute to bone regeneration during DO. The underlying mechanism of Schwann cells (SCs) in promoting bone regeneration during DO remains poorly understood.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Implantology, Stomatological Hospital and Dental School, Tongji University & Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai200072, China.
Zhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Hematology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, Jiangsu Province, China.
Objective: To explore the mutation of gene in patients with myelodysplastic syndromes (MDS), and explore their correlation with mutations of other genes, clinical features and prognostic of patients.
Methods: High throughput DNA sequencing was used to identify mutations in common blood tumor genes. The mutational characteristics of the gene and the correlation between gene mutations and patients clinical characteristics and prognosis were retrospectively analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!