Chloroethane was observed in a chronic cancer bioassay to be a mouse-specific uterine carcinogen at a single high inhaled concentration (15,000 ppm). Although high incidence occurred in the female mouse (86%), no uterine tumor increases were observed in female rats. Chloroethane is a weak alkylating agent and has low acute toxicity. No genotoxicity potential has been observed below 40,000 ppm. Chloroethane is eliminated from the body by pulmonary exhalation and metabolically by oxidation via cytochrome P-450 (likely producing acetaldehyde) and conjugation with glutathione (GSH). The mode of action for the mouse-specific uterine tumors is not definitively known and could involve parent chemical and/or metabolite(s). A physiologically based pharmacokinetic (PBPK) model for chloroethane disposition in the rat was developed previously, but no such models have been described for mice or humans. For the work reported here, the existing PBPK model for chloroethane in rats was expanded and refined, and PBPK models for chloroethane disposition in mice and humans were developed to allow species comparisons of internal dosimetry and for possible insights into the carcinogenic mode of action. The amounts metabolized via glutathione-S-transferase (GST) versus cytochrome P-450, and the total amount of chloroethane absorbed, were most consistent with the observations made concerning uterine tumors, with amounts metabolized via GST providing the larger quantitative difference between the two rodent species. Choice of the most relevant dose metric for risk assessments involving uterine tumors in mice will require pharmacodynamic considerations in the mode of action in addition to the pharmacokinetic differences reported here.

Download full-text PDF

Source
http://dx.doi.org/10.1093/toxsci/kfn064DOI Listing

Publication Analysis

Top Keywords

chloroethane disposition
12
mode action
12
uterine tumors
12
physiologically based
8
based pharmacokinetic
8
chloroethane
8
disposition mice
8
mouse-specific uterine
8
cytochrome p-450
8
pbpk model
8

Similar Publications

An optimised Cu(0)-RDRP approach for the synthesis of lipidated oligomeric vinyl azlactone: toward a versatile antimicrobial materials screening platform.

J Mater Chem B

November 2019

ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia.

This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers via an optimised Cu(0)-mediated reversible-deactivation radical polymerisation approach, and the use of these oligomers as a versatile functional platform for the rapid generation of antimicrobial materials. The relative amounts of CuBr and MeTREN were optimised to allow the fast and controlled polymerisation of VDM. These conditions were then used with the initiators ethyl 2-bromoisobutyrate, dodecyl 2-bromoisobutyrate, and (R)-3-((2-bromo-2-methylpropanoyl)oxy)propane-1,2-diyl didodecanoate to synthesise a library of oligo(VDM) (degree of polymerisation = 10) with ethyl, dodecyl or diglyceride end-groups.

View Article and Find Full Text PDF

The goal of this study was to test the feasibility to load non-ordered, non-spherical mesoporous silica with the model drug paracetamol, and subsequently coat the loaded particles using one single pilot scale fluid bed system equipped with a Wurster insert. Mesoporous silica particles (Davisil(®)) with a size ranging from 310 to 500μm and an average pore diameter of 15nm were loaded with paracetamol to 18.8% drug content.

View Article and Find Full Text PDF

Determination of the polar and total surface energy distributions of particulates by inverse gas chromatography.

Langmuir

January 2011

Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), 381 Royal Parade, Victoria 3052, Australia.

This Letter reports a technique of measuring polar surface energy distributions of lactose using inverse gas chromatography (IGC). The significance of this study is that the total surface energy distributions can now be characterized by combining the already known dispersive surface energy distribution with polar surface energy distribution determined in this study. The polar surface energy was calculated from the specific free energies for surface interactions with a monopolar basic probe, ethyl acetate, and a monopolar acidic probe, dichloromethane.

View Article and Find Full Text PDF

Chloroethane was observed in a chronic cancer bioassay to be a mouse-specific uterine carcinogen at a single high inhaled concentration (15,000 ppm). Although high incidence occurred in the female mouse (86%), no uterine tumor increases were observed in female rats. Chloroethane is a weak alkylating agent and has low acute toxicity.

View Article and Find Full Text PDF

Physiologically based toxicokinetic modeling of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss).

Toxicol Appl Pharmacol

September 1991

United States Environmental Protection Agency, Environmental Research Laboratory-Duluth, Minnesota 55804.

A physiologically based toxicokinetic model for fish was used to simulate the uptake and disposition of three waterborne chloroethanes in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 1,1,2,2-tetrachloroethane, pentachloroethane, and hexachloroethane in fish respirometer-metabolism chambers to assess the kinetics of chemical accumulation in arterial blood and chemical extraction efficiency from inspired water. Chemical residues in tissues were measured at the end of each experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!