The rotational mechanism of ATP synthases requires a unique interface between the stator a subunit and the rotating c-ring to accommodate stability and smooth rotation simultaneously. The recently published c-ring crystal structure of the ATP synthase of Ilyobacter tartaricus represents the conformation in the absence of subunit a. However, in order to understand the dynamic structural processes during ion translocation, studies in the presence of subunit a are required. Here, by intersubunit Cys-Cys cross-linking, the relative topography of the interacting helical faces of subunits a and c from the I. tartaricus ATP synthase has been mapped. According to these data, the essential stator arginine (aR226) is located between the c-ring binding pocket and the cytoplasm. Furthermore, the spatially vicinal residues cT67C and cG68C in the isolated c-ring structure yielded largely asymmetric cross-linking products with aN230C of subunit a, suggesting a small, but significant conformational change of binding-site residues upon contact with subunit a. The conformational change was dependent on the positive charge of the stator arginine or the aR226H substitution. Energy-minimization calculations revealed possible modes for the interaction between the stator arginine and the c-ring. These biochemical results and structural restraints support a model in which the stator arginine operates as a pendulum, moving in and out of the binding pocket as the c-ring rotates along the interface with subunit a. This mechanism allows efficient interaction between subunit a and the c-ring and simultaneously allows almost frictionless movement against each other.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2008.06368.x | DOI Listing |
Nat Commun
November 2024
Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.
View Article and Find Full Text PDFJ Phys Chem B
February 2023
Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo169-8555, Japan.
The electrochemical potential difference of protons across the membrane is used to synthesize ATP through the proton-motive rotatory motion of the membrane-embedded region of ATP synthase called F. In this study, we illuminate the unsolved proton-motive rotary mechanism of F on the basis of atomistic simulation with full description of protein, lipid, and water molecules, and highlight the underlying Coulombic design. We first show that a water channel is spontaneously formed at the interfacial region between the rotor (-ring) and the stator (-subunit).
View Article and Find Full Text PDFFront Microbiol
August 2022
School of Life Sciences, Arizona State University, Tempe, AZ, United States.
The F-ATP synthase, consisting of F and F motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F (αβ) ring stator contains three catalytic sites. Single-molecule F rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position.
View Article and Find Full Text PDFSci Rep
July 2018
Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
ATP synthase is powered by the flow of protons through the molecular turbine composed of two α-helical integral membrane proteins, subunit a, which makes a stator, and a cylindrical rotor assembly made of multiple copies of subunit c. Transient protonation of a universally conserved carboxylate on subunit c (D61 in E. coli) gated by the electrostatic interaction with arginine on subunit a (R210 in E.
View Article and Find Full Text PDFElife
December 2017
Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
ATP synthases produce ATP by rotary catalysis, powered by the electrochemical proton gradient across the membrane. Understanding this fundamental process requires an atomic model of the proton pathway. We determined the structure of an intact mitochondrial ATP synthase dimer by electron cryo-microscopy at near-atomic resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!