A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of NO production in LPS-stimulated mouse macrophage-like cells by trihaloacetylazulene derivatives. | LitMetric

The effect of 20 trihaloacetylazulene derivatives with one halogen atom, on nitric oxide (NO) production by mouse macrophage-like cells Raw 264.7 was investigated. 2-Methoxyazulenes and 2-ethoxyazulenes exhibited comparable cytotoxicity. Trichloroacetylazulenes generally exhibited higher cytotoxicity, as compared with the corresponding trifluoroacetylazulenes. Substitution of chloride, bromide or iodine at the C-3 position further enhanced their cytotoxicity. All of these compounds failed to stimulate the Raw 264.7 cells to produce detectable amounts of NO, but did inhibit NO production by LPS-activated Raw 264.7 cells to different extents. 1-Trichloroacetyl-2-methoxyazulene and 1-trichloroacetyl-2-ethoxyazulene, with less cytotoxic activity, inhibited NO production to the greatest extent, producing the highest selectivity index (SI) of >24.7 and >28.7, respectively. This was accompanied by the efficient inhibition of inducible NO synthase (iNOS) mRNA expression, but not by iNOS protein abundance. Electron spin resonance (ESR) spectroscopy showed that neither of these compounds produced radicals, nor scavenged NO, superoxide anion or diphenyl-2-picrylhydrazyl radicals. The present study suggests that the inhibitory effects of trifluoroacetylazulenes and trichloroacetylazulenes on NO production by activated macrophages might be derived from the perturbation of NO anabolism (inhibition of iNOS mRNA expression and possibly the inactivation of iNOS protein) rather than NO catabolism (NO scavenging).

Download full-text PDF

Source

Publication Analysis

Top Keywords

raw 2647
12
mouse macrophage-like
8
macrophage-like cells
8
trihaloacetylazulene derivatives
8
2647 cells
8
inos mrna
8
mrna expression
8
inos protein
8
inhibition production
4
production lps-stimulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!