We show that analytical ultracentrifugation can be applied to derive full equations of state of colloids in a single sedimentation equilibrium experiment, by determination of single-phase boundaries as well as of osmotic pressure versus concentration at fixed temperatures. A continuous dependence of the osmotic pressure, over orders of magnitude between at least approximately 10(1) and 10(4) Pa, and a wide concentration range, are determined in agreement with standard theoretical considerations. Two model experimental colloidal systems are investigated: For a well-known synthetic clay system (laponite), it is shown that two regimes-counter-ion ideal gas and interacting double layers-can easily be identified in the equation of state, whereas metastable glass- or microphase-separated gel states previously encountered in osmotic stress measurements of laponite are circumvented. For the case of rigid, crystallized catanionic bilayers, single phase domains can be identified. Osmotic pressure results in this case disagree with results obtained using the classical osmotic stress technique, as a result of sample adhesion to the ultracentrifuge cell windows and uncertainty due to possible micromolar ion contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200700668 | DOI Listing |
Luminescence
January 2025
Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India.
Bioluminescence inhibition (BLI) measurements in bioluminescent bacteria (BB) is perceived as a potential qualitative and quantitative indicator of hazardous materials. Acute but minor fluctuations in osmolarity and pH do not affect the living systems significantly. However, significant BLI is observed from marine BB due to acute osmolarity or pH changes that may affect the bioassay sensitivity.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia.
Background: Dental root canal failure is a disease caused by gram-positive bacteria, Enterococcus faecalis. The disease is caused by the bacterial cell wall consisting of a peptidoglycan layer that protects the bacteria from internal osmotic pressure. Peptidoglycan biosynthesis includes many enzymes, such as MurA, Penicillin-binding protein (PBP), and SrtA.
View Article and Find Full Text PDFJ Vis Exp
December 2024
1State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry; Comprehensive Experimental Center in Yellow River Delta of Chinese Academy of Forestry; Tianjin Institute of Forestry Science, Chinese Academy of Forestry;
Cryptobiosis is a state where organisms lose nearly all their internal water and enter anhydrobiosis under extreme environmental stress. The dispersal third-stage juveniles (pre-dauer juveniles, ) of Bursaphelenchus xylophilus can enter cryptobiosis through dehydration and revive upon rehydration when environmental conditions improve. Osmotic regulation is crucial for their survival in this process.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146.
Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.
View Article and Find Full Text PDFMechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!