Setting the stage: possible mechanisms by which acute contraction restores insulin sensitivity in muscle.

Am J Physiol Regul Integr Comp Physiol

Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Department of Nutritional Sciences and Internal Medicine, University of Missouri, Columbia, Missouri 65211, USA.

Published: April 2008

It has long been known that acute exercise can dramatically improve insulin sensitivity in previously insulin-resistant muscle; however, the precise mechanisms underlying this clinically significant interaction remain unknown. Using hindlimb perfusions in obese Zucker rats, our group found that acute muscle contraction synergistically improved insulin-stimulated glucose transport in skeletal muscle, but contrary to our hypothesis, these findings were not associated with either improved insulin signaling or decreased intramuscular lipid metabolites. A further analysis revealed that the improved insulin sensitivity was associated with a robust increase in mitochondrial energy flux. These findings and reports from other labs suggest that mitochondrial energy flux and mitochondrial oxidative capacity may govern insulin sensitivity and override insulin signaling defects associated with obesity. This review will discuss the effects of acute exercise to enhance insulin sensitivity in previously insulin-resistant muscle and present possible novel mechanisms by which alterations in mitochondrial energy metabolism may play a regulatory role.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00924.2007DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
20
mitochondrial energy
12
acute exercise
8
sensitivity insulin-resistant
8
insulin-resistant muscle
8
improved insulin
8
insulin signaling
8
energy flux
8
insulin
7
sensitivity
5

Similar Publications

Objective: We investigated associations between per- and polyfluoroalkyl substances (PFAS) and changes in diabetes indicators from pregnancy to 12 years after delivery among women with a history of gestational diabetes mellitus (GDM).

Research Design And Methods: Eighty Hispanic women with GDM history were followed from the third trimester of pregnancy to 12 years after delivery. Oral and intravenous glucose tolerance tests were conducted during follow-up.

View Article and Find Full Text PDF

An insight on the additive impact of type 2 diabetes mellitus and nonalcoholic fatty liver disease on cardiovascular consequences.

Mol Biol Rep

January 2025

Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.

Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.

View Article and Find Full Text PDF

Glucose Metabolic Abnormalities and Their Interaction With Defective Phosphate Homeostasis in Tumor-induced Osteomalacia.

J Clin Endocrinol Metab

January 2025

Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.

Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.

Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.

View Article and Find Full Text PDF

Objective: Type A insulin resistance syndrome (IRS), characterized by impaired insulin receptor function due to variants of the insulin receptor gene, manifests as severe insulin-resistant diabetes. Differentiation of type A IRS from type 2 diabetes on the basis of hyperinsulinemia can be challenging. Given the association between insulin receptor dysfunction and reduced insulin clearance, we evaluated the potential of the circulating C-peptide reactivity (CPR)/immunoreactive insulin (IRI) molar ratio, a marker of insulin clearance, for distinguishing type A IRS from type 2 diabetes.

View Article and Find Full Text PDF

Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!