Asymmetric amplification is a phenomenon in which the enantiomeric excess (ee) of a product is higher than that of a chiral auxiliary for a catalyst. We analyzed the mechanism of asymmetric amplification observed in the addition of diethylzinc (Et(2)Zn) to benzaldehyde (PhCHO) to synthesize 1-phenyl-1-propanol in the presence of trans-1,2-diaminocyclohexane bistriflamide (DCBF) and titanium tetraisopropoxide (TIOP). In a manner similar to the reaction in which 1-piperidino-3,3-dimethyl-2-butanol is a chiral auxiliary for the catalyst, when asymmetric amplification was observed, the ee of the product varied as the reaction progressed. The mechanisms of variation in ee in the two reactions, however, were different. No asymmetric amplification was observed when TIOP and PhCHO were added to a mixture of DCBF and Et(2)Zn, while the ee of the product was always higher than that of DCBF when PhCHO and Et(2)Zn were added to a mixture of DCBF and TIOP. In the latter case, the product ee decreased as the reaction progressed. The results indicate that DCBF forms inactive heterochiral complex causing an increase in the ee of DCBF in the solution, which is the chiral auxiliary for the catalyst. But the complex is not very stable and gradually dissociates due to the reaction with Et(2)Zn. As a result, the asymmetric amplification decreases as the reaction progresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.20563 | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.
Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.
View Article and Find Full Text PDFOrg Lett
January 2025
Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Rd, Wuhan 430072, China.
An enantioselective oxypalladation/malononitrile addition cascade reaction of alkyne-tethered malononitriles was reported to synthesize enaminones bearing an all-carbon quaternary center. Using Pd(TFA)/Pyox as a precatalyst, an array of enaminone products were obtained in moderate overall yields, with excellent er (93.5:6.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:
Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.
View Article and Find Full Text PDFbioRxiv
December 2024
Caruso Department of Otolaryngology - Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Cochlear outer hair cells (OHCs) transduce sound-induced vibrations of their stereociliary bundles into receptor potentials that drive changes in cell length. While fast, phasic OHC length changes are thought to underlie an amplification process required for sensitive hearing, OHCs also exhibit large tonic length changes. The origins and functional significance of this tonic motility are unclear.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.
Easily obtainable and efficient chiral -symmetric bipyridine-,'-dioxide ligands with Ni(OTf) were developed for application in catalyzing [3 + 2] cycloaddition reactions to synthesize optically active fused pyrazolidines or pyrazoline derivatives featuring three contiguous stereogenic centers by employing azomethine imines and α,β-unsaturated 2-acyl imidazoles, affording the corresponding adducts with the opposite configuration compared to previous synthetic products in 80-98% yields with 28-99% ee and >20:1 dr. In addition, subsequent amplification experiments and derivative transformations of the product further demonstrated the efficient catalytic performance of the catalyst Ni(II)-bipyridine-,'-dioxide complexes and the practicality of this synthesis methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!