Bardet-Biedl syndrome (BBS) is a pleiotropic, genetically heterogeneous disorder characterized by obesity, retinopathy, polydactyly, cognitive impairment, renal and cardiac anomalies, as well as hypertension and diabetes. Multiple genes are known to independently cause BBS. These genes do not appear to code for the same functional category of proteins; yet, mutation of each results in a similar phenotype. Gene knockdown of different BBS genes in zebrafish shows strikingly overlapping phenotypes including defective melanosome transport and disruption of the ciliated Kupffer's vesicle. Here, we demonstrate that individual knockdown of bbs1 and bbs3 results in the same prototypical phenotypes as reported previously for other BBS genes. We utilize the zebrafish system to comprehensively determine whether simultaneous pair-wise knockdown of BBS genes reveals genetic interactions between BBS genes. Using this approach, we demonstrate eight genetic interactions between a subset of BBS genes. The synergistic relationships between distinct combinations are not due to functional redundancy but indicate specific interactions within a multi-subunit BBS complex. In addition, we utilize the zebrafish model system to investigate limb development. Human polydactyly is a cardinal feature of BBS not reproduced in BBS-mouse models. We evaluated zebrafish fin bud patterning and observed altered Sonic hedgehog (shh) expression and subsequent changes to fin skeletal elements. The SHH fin bud phenotype was also used to confirm specific genetic interactions between BBS genes. This study reveals an in vivo requirement for BBS function in limb bud patterning. Our results provide important new insights into the mechanism and biological significance of BBS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900902 | PMC |
http://dx.doi.org/10.1093/hmg/ddn093 | DOI Listing |
Elife
January 2025
John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.
Background: The salmon louse (Lepeophtheirus salmonis) is a parasite of wild and farmed salmonid fish, causing huge economic damage to the commercial farming of Atlantic salmon (Salmo salar) in the northern hemisphere. The avermectin emamectin benzoate (EMB) is widely used for salmon delousing. While resistance to EMB is widespread in Atlantic populations of L.
View Article and Find Full Text PDFSci Data
December 2024
Rothamsted Research, Protecting Crops and the Environment, Harpenden, UK.
Alopecurus aequalis is a winter annual or short-lived perennial bunchgrass which has in recent years emerged as the dominant agricultural weed of barley and wheat in certain regions of China and Japan, causing significant yield losses. Its robust tillering capacity and high fecundity, combined with the development of both target and non-target-site resistance to herbicides means it is a formidable challenge to food security. Here we report on a chromosome-scale assembly of A.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The efficacy of entomopathogenic fungi as pest control agents is constrained by both their physiological state and external environmental factors. This study identified synergists capable of enhancing the insecticidal activity of Beauveria bassiana (Bb) and investigated the underlying synergistic mechanisms. Our results found that among 6 potential synergists, polyethylene glycol 400 (PEG) and trehalose significantly improved Bb's lethality against Hyphantria cunea larvae, with PEG demonstrating the most pronounced effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!