In yeast, fragmentation of amyloid polymers by the Hsp104 chaperone allows them to propagate as prions. The prion-forming domain of the yeast Sup35 protein is rich in glutamine, asparagine, tyrosine, and glycine residues, which may define its prion properties. Long polyglutamine stretches can also drive amyloid polymerization in yeast, but these polymers are unable to propagate because of poor fragmentation and exist through constant seeding with the Rnq1 prion polymers. We proposed that fragmentation of polyglutamine amyloids may be improved by incorporation of hydrophobic amino acid residues into polyglutamine stretches. To investigate this, we constructed sets of polyglutamine with or without tyrosine stretches fused to the non-prion domains of Sup35. Polymerization of these chimeras started rapidly, and its efficiency increased with stretch size. Polymerization of proteins with polyglutamine stretches shorter than 70 residues required Rnq1 prion seeds. Proteins with longer stretches polymerized independently of Rnq1 and thus could propagate. The presence of tyrosines within polyglutamine stretches dramatically enhanced polymer fragmentation and allowed polymer propagation in the absence of Rnq1 and, in some cases, of Hsp104.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2397454PMC
http://dx.doi.org/10.1074/jbc.M802071200DOI Listing

Publication Analysis

Top Keywords

polyglutamine stretches
16
polymer fragmentation
8
rnq1 prion
8
polyglutamine
6
stretches
6
fragmentation
5
appearance propagation
4
propagation polyglutamine-based
4
polyglutamine-based amyloids
4
yeast
4

Similar Publications

A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling.

Nat Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The ataxin-3 protein features a unique structure with a functional N-terminal Josephin domain and a C-terminal region with ubiquitin interaction motifs, contributing to its role in neurodegenerative diseases like Machado-Joseph disease.
  • Researchers utilized sequence self-homology dot plot analysis and protein comparisons to study the evolution of ataxin-3 across Filozoa, revealing additional ubiquitin-binding motifs and confirming its conserved architecture.
  • Findings included insights into the evolution of ataxin-3, including the discovery of neofunctionalization events that link modifications in its structure to disease mechanisms, emphasizing the potential for new understandings of its molecular interactions.
View Article and Find Full Text PDF

Nanopore Identification of Polyglutamine Length via Cross-Slit Sensing.

J Phys Chem Lett

November 2024

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.

Nanopore sensing is now reshaping analytical proteomics with its simplicity, convenience, and high sensitivity. Determining the length of polyglutamine (polyQ) is crucial for the rapid screening of Huntington's disease. In this computational study, we present a cross-nanoslit detection approach to determine the polyQ length, where the nanoslit is carved within a two-dimensional (2D) in-plane heterostructure of graphene (GRA) and hexagonal boron nitride (hBN).

View Article and Find Full Text PDF

Neurexin1 level in Huntington's Disease and decreased Neurexin1 in disease progression.

Neurosci Res

October 2024

Department of Neurology, College of Medicine, Yonsei University, Seoul, South Korea. Electronic address:

Huntington's disease (HD) is a neurodegenerative disorder characterized by the presence of abnormally expanded polyglutamine tracts in huntingtin protein (HTT). Mutant HTT disrupts synaptic transmission and plasticity, particularly in the striatum and cortex, leading to early dysfunctions, such as altered neurotransmitter release, impaired synaptic vesicle recycling, and disrupted postsynaptic receptor function. Synaptic loss precedes neuronal degeneration and contributes to disease progression.

View Article and Find Full Text PDF

RNA repeat expansions fold into stable structures and cause microsatellite diseases such as Huntington's disease (HD), myotonic dystrophy type 1 (DM1), and spinocerebellar ataxias (SCAs). The trinucleotide expansion of r(CAG), or r(CAG), causes both HD and SCA3, and the RNA's toxicity has been traced to its translation into polyglutamine (polyQ; HD) as well as aberrant pre-mRNA alternative splicing (SCA3 and HD). Previously, a small molecule, , was discovered that binds to r(CAG) and rescues aberrant pre-mRNA splicing in patient-derived fibroblasts by freeing proteins bound to the repeats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!