MRI denoising using non-local means.

Med Image Anal

Biomedical Informatics Group (IBIME), ITACA Institute, Polytechnic University of Valencia, Camino de Vera, s/n. 46022 Valencia, Spain.

Published: August 2008

Magnetic Resonance (MR) images are affected by random noise which limits the accuracy of any quantitative measurements from the data. In the present work, a recently proposed filter for random noise removal is analyzed and adapted to reduce this noise in MR magnitude images. This parametric filter, named Non-Local Means (NLM), is highly dependent on the setting of its parameters. The aim of this paper is to find the optimal parameter selection for MR magnitude image denoising. For this purpose, experiments have been conducted to find the optimum parameters for different noise levels. Besides, the filter has been adapted to fit with specific characteristics of the noise in MR image magnitude images (i.e. Rician noise). From the results over synthetic and real images we can conclude that this filter can be successfully used for automatic MR denoising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2008.02.004DOI Listing

Publication Analysis

Top Keywords

random noise
8
magnitude images
8
noise
6
mri denoising
4
denoising non-local
4
non-local magnetic
4
magnetic resonance
4
images
4
resonance images
4
images random
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!