Macrophages or microglial cells are the major target cells for HIV-1 infection in the brain. The infected cells release neurotoxic factors that may cause severe neuronal cell damage, especially in the basal ganglia and hippocampus. In this study, we used rat OHC to examine the region-specific neuronal cell damage caused by HIV-1-infected macrophages. When OHC was cocultured with HIV-1-infected MDM, we found that neuronal cells at the GCL of the DG were preferentially killed via apoptosis, and that projection of MF from GCL to PCL of the CA3 region was severely disturbed. We marked precursor cells around the DG region by using an EGFP-expressing retrovirus vector and found that these cells lost the ability to differentiate into neurons when exposed to HIV-1-infected MDM. In the DG, new neurons are normally incorporated into GCL or PCL, while in the presence of HIV-1-infected MDM, mature neurons failed to be incorporated into those layers. These data indicate that the neurotoxic factor(s) released from HIV-1-infected macrophages impede(s) neuronal cell repair in brain tissue. This suggests that DG is the region of the hippocampus most vulnerable to neuronal damage caused by HIV-1 infection, and that its selective vulnerability is most likely due to the highly active neurogenesis that takes place in this region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1348-0421.2008.00012.x | DOI Listing |
Zool Res
January 2025
School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:
Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).
View Article and Find Full Text PDFZool Res
January 2025
BGI Research, Hangzhou, Zhejiang 310030, China.
The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.
View Article and Find Full Text PDFZool Res
January 2025
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China.
DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.
View Article and Find Full Text PDFCirc Res
January 2025
Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).
Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) caused by pathogenic immunoglobulin G antibodies to myelin oligodendrocyte glycoprotein is a rare demyelinating disease of the central nerve system (CNS). The clinical phenotypes of MOGAD include acute disseminated encephalomyelitis, optic neuritis, and transverse myelitis. At present, the mechanism underlying the disease is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!