By combining the gauge cell method and lattice model, we study the surface phase transition and adsorption behaviors of surfactants on a solid surface. Two different cases are considered in this work: macrophase transition and adsorption in a single-phase region. For the case of macrophase transition, where two phases coexist, we investigate the shape and size of the critical nuclei and determine the height of the nucleation barrier. It is found that the nucleation depends on the bulk surfactant concentration. Our simulations show that there exist a critical temperature and critical adsorption energy, below which the transition from low-affinity adsorption to the bilayer structure shows the characteristic of a typical first-order phase transition. Such a surface phase transition in the adsorption isotherm is featured by a hysteresis loop. The hysteresis loop becomes narrower at higher temperature and weaker adsorption energy and finally disappears at the critical value. For the case where no macrophase transition occurs, we study the adsorption isotherm and microphase separation in a single-phase region. The simulation results indicate that the adsorption isotherm in adsorption processes is divided into four regions in a log-log plot, being in agreement with experimental observations. In this work, the four regions are called the low-affinity adsorption region, the hemimicelle region, the morphological transition region, and the plateau region. Simulation results reveal that in the second region the adsorbed monomers aggregate and nucleate hemimicelles, while adsorption in the third region is accompanied by morphological transitions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la800046s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!