Emission from charge recombination between radical cations and anions of various tetrakis(arylethynyl)benzenes (TAEBs) was measured during pulse radiolysis in benzene (Bz). The formation of TAEB in the excited singlet state ((1)TAEB*) can be attributed to the charge recombination between TAEB (*+) and TAEB (*-), which is initially generated from the radiolytic reaction. It was found that the charge recombination between TAEB (*+) and TAEB (*-) gave (1)TAEB* as the emissive species but not excimers because of the large repulsion between substituents caused by the rotation around C-C single bonds. Since donor-/acceptor-substituted TAEBs possess three types of charge-transfer pathways (linear-conjugated, cross-conjugated, and "bent"-conjugated pathways between the donor and acceptor substituents through the ethynyl linkage), the emission spectra of (1)TAEBs* with intramolecular charge transfer (ICT) character depend on the substitution pattern and the various types of donor and acceptor groups during pulse radiolysis. Through control of the substitution pattern (e.g., the position of the nitrogen atom within the pyridine ring or the number of acceptors per arene ring of the regioisomeric donor-/acceptor-substituted TAEBs with donating N, N-dibutylamino and accepting pyridine unit (N1-9) and those with donating N, N-dibutylamino and accepting one (F1-3), two trifluoromethyl (F4-6), or perfluorinated arene (F7-9) units), fine-tuning of radiolysis induced emission color can be achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo8001535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!