Inoculation of azotobacter has significant positive effects on the growth characteristics and pigments in mangrove seedlings of Avicennia marina and Ceriops decandra. The bacterial inoculation significantly increased the root dry biomass at the maximum of 75.8% at 30 gl(-1) salinity in Ceriops decandra. But in Avicennia marina, the shoot dry biomass was increased significantly at the maximum of 56.12% at 30 gl(-1) salinity in general, the Azotobacter beijerinkii improved the growth characteristics better in both species of mangroves preferably at higher salinity levels in A. marina and at a range of salinity in C. decandra. The results recommend this forraising vigorous seedlings under nursery conditions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

avicennia marina
12
ceriops decandra
12
marina ceriops
8
growth characteristics
8
dry biomass
8
gl-1 salinity
8
growth avicennia
4
marina
4
decandra
4
decandra seedlings
4

Similar Publications

Effectiveness of artificially planted mangroves on remediation of metals released from ship-breaking activities.

Mar Pollut Bull

January 2025

Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:

The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.

View Article and Find Full Text PDF

Field Investigation of Wave Attenuation in a Mangrove Forest Dominated by (Forsk.) Viern.

Plants (Basel)

January 2025

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

Based on field observation at the north coast of the Zhanjiang Bay in southern China, the characteristics of wave attenuation due to the drag force of one mangrove species, (Forsk.) Viern., were quantitatively analyzed.

View Article and Find Full Text PDF

Salt stress is common but detrimental to plant growth, even in mangroves that live in saline areas. Boron (B) is an essential micronutrient that performs an important role in many functions in plants; however, its protective role under salt stress is poorly understood, especially in long-lived woody plants. In this study, we conducted an indoor experiment under simulated tidal conditions with four treatments (10‱ salinity, 40‱ salinity, 40‱ salinity + 100 μM B, and 40‱ salinity + 500 μM B) and three mangrove species (, , and ) to investigate the effects of exogenous B on salt tolerance in plant growth, morphology, physiology, and leaf anatomy.

View Article and Find Full Text PDF

In arid and semi-arid climates, native plants have developed unique strategies to survive challenging conditions. These adaptations often rely on molecular pathways that shape plant architecture to enhance their resilience. Date palms (Phoenix dactylifera) and mangroves (Avicennia marina) endure extreme heat and high salinity, yet the metabolic pathways underlying this resilience remain underexplored.

View Article and Find Full Text PDF

Impact of Salinity Gradients on Seed Germination, Establishment, and Growth of Two Dominant Mangrove Species Along the Red Sea Coastline.

Plants (Basel)

December 2024

Center for Applied Research on the Environment and Sustainability (CARES), School of Science and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.

Background: Mangroves are one of the key nature-based solutions that mitigate climate change impacts. Even though they are halophytic in nature, seedlings are vulnerable to high salinity for their establishment. This study investigated the effects of different salinities on seedling growth and mineral element composition of two dominant species ( and ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!