Heat-shock proteins (HSPs) are a group of evolutionarily conserved polypeptides whose expression is induced in all organisms in response to environmental stresses and during various developmental processes. In this work, we show that the rose (Rosa hybrida) cytoplasmic 17.5-kDa Class I small HSP (sHSP17.5-CI, accession number: BQ103946) increases dramatically during flower development, and accumulates in closed bud petals and leaves only in response to heat stress. mRNA for a putative ortholog of this protein is also found in petals, but not leaves, of Arabidopsis (Arabidopsis thaliana) plants grown under optimal conditions, and it accumulates in leaves in response to heat stress. Analysis of Arabidopsis T-DNA insertion lines affected at three homologous genes revealed that their acquired thermotolerance, as measured by hypocotyl-elongation assay, is impaired. The correlation between sHSP-CI accumulation and expansion of rose petal cells, impairment of acquired thermotolerance, and defects in early embryogenesis of the double mutants (hsp17.4/hsp17.6A), all suggest that sHSP-CI proteins play a role in protecting cell proteins at various developmental stages, whereas in hypocotyl elongation they have a non-redundant function in acquired thermotolerance but have a redundant function in early embryogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-008-9326-4DOI Listing

Publication Analysis

Top Keywords

acquired thermotolerance
16
petals leaves
8
leaves response
8
response heat
8
heat stress
8
early embryogenesis
8
non-redundant functions
4
functions shsp-cis
4
acquired
4
shsp-cis acquired
4

Similar Publications

Heat stress and pathogens are two serious yield-limiting factors of crop plants. Plants that previously experienced high but sub-lethal temperatures become subsequently tolerant to higher temperatures through the development of acquired thermotolerance (ATT). ATT activation is associated with the elevated expression of heat shock (HS)-related genes such as HSFA2, HSFA3, and HSP101.

View Article and Find Full Text PDF

Acquired thermotolerance (also known as priming) is the ability of cells or organisms to survive acute heat stress if preceded by a milder one. In plants, acquired thermotolerance has been studied mainly at the transcriptional level, including recent descriptions of sophisticated regulatory circuits that are essential for this learning capacity. Here, we tested the involvement of polysome-related processes (translation and cotranslational mRNA decay (CTRD)) in Arabidopsis (Arabidopsis thaliana) thermotolerance using two heat stress regimes with and without a priming event.

View Article and Find Full Text PDF

Altered sterol composition mediates multiple tolerance of Kluyveromyces marxianus for xylitol production.

Microb Cell Fact

October 2024

Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, Anhui, P. R. China.

Article Synopsis
  • The study explores challenges in microbial fermentation, highlighting stress factors like temperature and toxic byproducts that hinder efficient compound synthesis in cell factories.
  • Researchers engineered the yeast Kluyveromyces marxianus by modifying ergosterol synthesis genes, resulting in improved tolerance to heat, acidity, and osmotic pressure.
  • The modified strain, YZB453, achieved high xylitol production rates using corncob hydrolysate, demonstrating a cost-saving method for fermentation at elevated temperatures.
View Article and Find Full Text PDF

Genomics Insights into Causing Infection in a Cat with Pyogranulomatous Dermatitis and Panniculitis.

Pathogens

September 2024

General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy.

(homotypic synonym: ) represents an ungrouped thermotolerant rapidly growing mycobacteria (RGM) species occasionally associated with infections and disease in humans. In this report, we describe a case of pyogranulomatous dermatitis and panniculitis due to in an immunocompetent adult cat. To the best of our knowledge, this represents the first report of infection in animals.

View Article and Find Full Text PDF

Thermophilic microorganisms are expected to have smaller cells and genomes compared with mesophiles, a higher proportion of horizontally acquired genes, and distinct nucleotide and amino acid composition signatures. Here, we took an integrative approach to investigate these apparent correlates of thermophily for Synechococcus A/B cyanobacteria, which include the most heat-tolerant phototrophs on the planet. Phylogenomics confirmed a unique origin of different thermotolerance ecotypes, with low levels of continued gene flow between ecologically divergent but overlapping populations, which has shaped the distribution of phenotypic traits along these geothermal gradients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!