Purpose: Treatment of lung cancer patients with antiangiogenesis agents is a new promising paradigm. Tumor cavitation is frequently noted in these patients, but the clinical significance of this finding has not been fully determined. Our purposes were to evaluate the frequency, imaging characteristics, and clinical outcome of patients receiving antiangiogenesis agents who develop tumor cavitation, and correlate these findings with therapy related adverse events, especially hemoptysis.

Methods: Retrospective analysis of lung cancer patients treated with antiangiogenesis agents in MD Anderson Cancer Center between June 1998 and June 2005. Clinical data were retrieved from medical records, and chest imaging findings were documented.

Results: One hundred and twenty-four patients were treated in 10 different trials. All patients had advanced lung cancer and failed previous chemotherapy. Seventeen patients developed tumor cavitation during the trial (14%; median time to event, 1.8 months; range, 0.7-6.2 months), 16 patients (13%) had preexisting cavitary tumors, and 91 (73%) did not develop cavitation. Cavity formation was more common with squamous cell histology (p = 0.04) but was not associated with hemoptysis (p = 0.12), tumor location (central versus peripheral), imaging characteristics, progression-free survival (p = 0.56), or overall survival (p = 0.33). Hemoptysis was noted in five patients (median time to event, 1.3 months; range, 0.8-2.9 months). One of five patients with hemoptysis was fatal in a cavitary squamous cell tumor. Additional adverse events were hypertension, rash, and proteinuria, none associated with cavitation.

Conclusion: Development of tumor cavitation is not rare in lung cancer patients treated with antiangiogenesis agents, but the clinical implications are minimal in most cases.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JTO.0b013e318168c7e9DOI Listing

Publication Analysis

Top Keywords

tumor cavitation
20
antiangiogenesis agents
20
lung cancer
20
patients
12
cancer patients
12
patients treated
12
imaging characteristics
8
adverse events
8
treated antiangiogenesis
8
median time
8

Similar Publications

Clinical and imaging features of co-existent pulmonary tuberculosis and lung cancer: a population-based matching study in China.

BMC Cancer

January 2025

Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.

Background: Co-existent pulmonary tuberculosis and lung cancer (PTB-LC) represent a unique disease entity often characterized by missed or delayed diagnosis. This study aimed to investigate the clinical and radiological features of patients diagnosed with PTB-LC.

Methods: Patients diagnosed with active PTB-LC (APTB-LC), inactive PTB-LC (IAPTB), and LC alone without PTB between 2010 and 2022 at our institute were retrospectively collected and 1:1:1 matched based on gender, age, and time of admission.

View Article and Find Full Text PDF

Ultrasound-triggered drug-loaded nanobubbles for enhanced T cell recruitment in cancer chemoimmunotherapy.

Biomaterials

January 2025

Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China. Electronic address:

Chemotherapy combined with immunotherapy is a highly promising approach for treating tumors. However, chemotherapeutic drugs often fail to accumulate effectively at the tumor site after systemic administration and they lack sufficient immunogenicity to activate adaptive immunity, making an effective T-cell immune response within the tumor microenvironment difficult to achieve. Here, this work developed drug-loaded nanobubbles (DTX-R837@NBs) that encapsulate the chemotherapy drug docetaxel and the immune adjuvant R837 via a thin-film hydration method.

View Article and Find Full Text PDF

Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.

View Article and Find Full Text PDF

Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!