The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423306 | PMC |
http://dx.doi.org/10.1128/MCB.01828-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!