Alkaliphilus oremlandii sp. nov. strain OhILAs is a mesophilic, spore-forming, motile, low mole%GC gram positive. It was enriched from Ohio River sediments on a basal medium with 20 mM lactate and 5 mM arsenate and isolated through passage on medium with increased arsenic concentration (10 and 20 mM), tindalization, and serial dilution. The pH optimal for growth was 8.4 and 16S rRNA gene sequence analysis indicated it is most closely related to species in the genus Alkaliphilus (A. crotonoxidans 95%, A. auruminator 95%, A. metalliredigens, 94%). A strict anaerobe, it can ferment lactate via the acrylate pathway as well as fructose and glycerol. A. oremlandii also has respiratory capability, as it is able to use arsenate and thiosulfate as terminal electron acceptors with acetate, pyruvate, formate, lactate, fumarate, glycerol, or fructose as the electron donor. A respiratory arsenate reductase, which is constitutively expressed, has been identified through biochemical and Western blot analyses and confirmed by cloning and sequencing of the gene encoding the structural subunit arrA. The entire arr operon as well as the ars operon have also been identified in the fully annotated genome. A. oremlandii also transforms the organoarsenical 3-nitro-4-hydroxy benzene arsonic acid (roxarsone). Growth experiments and genomic analysis suggest that it couples the reduction of the nitro group of the organoarsenical to the oxidation of either lactate or fructose in a dissimilatory manner, generating ATP via a sodium dependent ATP synthase.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1419.006DOI Listing

Publication Analysis

Top Keywords

alkaliphilus oremlandii
8
oremlandii nov
8
nov strain
8
strain ohilas
8
transformation inorganic
4
inorganic organic
4
organic arsenic
4
arsenic alkaliphilus
4
oremlandii
4
ohilas alkaliphilus
4

Similar Publications

Biomass and enzymatic activities of marine bacteria in the presence of multiple metals.

Braz J Microbiol

September 2023

Departamento de Biologia Marinha, Programa de Pós-Graduação Em Biologia Marinha E Ambientes Costeiros, Universidade Federal Fluminense, Niterói, RJ, CEP 24020-150, Brazil.

Marine environments are a repository for metals, and humans have enhanced this phenomenon over the years. Heavy metals are notoriously toxic due to their ability to biomagnify in the food chain and interact with cellular components. Nevertheless, some bacteria have physiological mechanisms that enable them to survive in impacted environments.

View Article and Find Full Text PDF

Fermented concentrated feed has been widely recognized as an ideal feed in the animal industry. In this study, we used a powerful method, coupling propidium monoazide (PMA) pretreatment with single-molecule real-time (SMRT) sequencing technology to compare the bacterial and fungal composition of feeds before and after fermentation with four added lactic acid bacteria (LAB) inoculants (one Lactobacillus casei strain and three L. plantarum strains).

View Article and Find Full Text PDF

Evaluation of Bacterial Contamination in Goat Milk Powder Using PacBio Single Molecule Real-Time Sequencing and Droplet Digital PCR.

J Food Prot

November 2018

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, and Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, People's Republic of China (ORCID: http://orcid.org/0000-0002-2672-3798 [H.M.]).

Goat milk powder is a nutritious and easy-to-store product that is highly favored by consumers. However, the presence of contaminating bacteria and their metabolites may significantly affect the flavor, solubility, shelf life, and safety of the product. To comprehensively and accurately understand the sanitary conditions in the goat milk powder production process and potential threats from bacterial contamination, a combination of Pacific Biosciences single molecule real-time sequencing and droplet digital PCR was used to evaluate bacterial contamination in seven goat milk powder samples from three dairies.

View Article and Find Full Text PDF

The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows.

Sci Bull (Beijing)

June 2017

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China. Electronic address:

Probiotics administration can improve host health. This study aims to determine the effects of probiotics (Lactobacillus casei Zhang and Lactobacillus plantarum P-8) administration on milk production, milk functional components, milk composition, and fecal microbiota of dairy cows. Variations in the fecal bacteria microbiota between treatments were assessed based on 16S rRNA profiles determined by PacBio single molecule real-time sequencing technology.

View Article and Find Full Text PDF

A novel anaerobic, mesophilic, heterotrophic bacterium, designated strain DY2726DT, was isolated from West Pacific Ocean sediments. Cells were long rods (0.5-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!