Purpose: Ocular albinism type 1 (OA1) is characterized by abnormalities in retinal pigment epithelium (RPE) melanosomes and misrouting of optic axons. The OA1 gene encodes a G-protein-coupled receptor (GPCR) that coimmunoprecipitates with the G alpha i-subunit of heterotrimeric G-proteins from human melanocyte extracts. This study was undertaken to test whether one of the G alpha i proteins, G alpha i3, signals in the same pathway as OA1 to regulate melanosome biogenesis and axonal growth through the optic chiasm.
Methods: Adult G alpha i3(-/-) and Oa1(-/-) mice were compared with their respective control mice (129Sv and B6/NCrl) to study the effects of the loss of G alpha i3 or Oa1 function. Light and electron microscopy were used to analyze the morphology of the retina and the size and density of RPE melanosomes, electroretinograms to study retinal function, and retrograde labeling to investigate the size of the uncrossed optic pathway.
Results: Although G alpha i3(-/-) and Oa1(-/-) photoreceptors were comparable to those of the corresponding control retinas, the density of their RPE melanosomes was significantly lower than in control RPEs. In addition, the RPE cells of G alpha i3(-/-) and Oa1(-/-) mice showed abnormal melanosomes that were far larger than the largest 129Sv and B6/NCrl melanosomes, respectively. Although G alpha i3(-/-) and Oa1(-/-) mice had normal results on electroretinography, retrograde labeling showed a significant reduction from control in the size of their ipsilateral retinofugal projections.
Conclusions: These results indicate that G alpha i3, like Oa1, plays an important role in melanosome biogenesis. Furthermore, they suggest a common Oa1-G alpha i3 signaling pathway that ultimately affects axonal growth through the optic chiasm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881626 | PMC |
http://dx.doi.org/10.1167/iovs.08-1806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!