Previous studies revealed that wogonin, a naturally occurring monoflavonoid extracted from Scutellariae radix, possessed anticancer activity both in vitro and in vivo. However, the molecular mechanism of its potent anticancer activity remains poorly understood and warrants further investigations. In this study, we found for the first time that wogonin inhibited the growth and tumor angiogenesis of human gastric carcinoma in nude mice. We explored the inhibitory effect of wogonin on angiogenesis stimulated by vascular endothelial growth factor (VEGF) in vitro. Wogonin suppressed the VEGF-stimulated migration and tube formation of human umbilical vein endothelial cells (HUVECs). It also restrained VEGF-induced tyrosine phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2). This inhibition of receptor phosphorylation was correlated with a significant decrease in VEGF-triggered phosphorylated forms of ERK, AKT and p38. Taken together, these findings strongly suggest that wogonin might be a promising antitumor drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2008.02.013DOI Listing

Publication Analysis

Top Keywords

tyrosine phosphorylation
8
anticancer activity
8
vascular endothelial
8
endothelial growth
8
growth factor
8
wogonin
6
wogonin suppresses
4
suppresses tumor
4
growth
4
tumor growth
4

Similar Publications

Plasma membrane-associated ARAF condensates fuel RAS-related cancer drug resistance.

Nat Chem Biol

January 2025

Zhejiang Key Laboratory of Molecular Cancer Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.

RAF protein kinases are major RAS effectors that function by phosphorylating MEK. Although all three RAF isoforms share a conserved RAS binding domain and bind to GTP-loaded RAS, only ARAF uniquely enhances RAS activity. Here we uncovered the molecular basis of ARAF in regulating RAS activation.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

The protective effect of zinc oxide nanoparticles on boar sperm during preservation at 17 °C.

Anim Reprod

January 2025

Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Hebei Langfang, China.

More than 90% of spermatozoa of boars in pork producing countries is stored in liquid at 17 °C; however, the quality of these spermatozoa is affected by bacterial breeding and oxidative damage. This study analyzed sperm quality and sperm capacitation after storage to study the effects of the effects of ZnO nanoparticles (ZnO NPs) supplementation on seminal plasma (SP)-free sperm preservation. We investigated the effects of adding 20, 50, 100 and 200 μg/mL of ZnO NPs to a seminal free boar sperm diluent over a 7-day period at 17 °C to assess the changes in non-capacitated/capacitated sperm quality parameters, antioxidant capacity, ATP content and extent of protein tyrosine phosphorylation.

View Article and Find Full Text PDF

Background: Signaling pathways centered on the G-protein ADP-ribosylation factor 6 (Arf6) and its downstream effector ArfGAP with the SH3 Domain, Ankyrin Repeat and PH Domain 1 (AMAP1) drive cancer invasion, metastasis, and therapy resistance. The Arf6-AMAP1 pathway has been reported to promote receptor recycling leading to programmed cell death-ligand 1 (PD-L1) overexpression in pancreatic ductal carcinoma. Moreover, AMAP1 regulates of nuclear factor-kappa B (NF-κB), which is an important molecule in inflammation and immune activation, including tumor immune interaction through PD-L1 regulation.

View Article and Find Full Text PDF

A safe haven for cancer cells: tumor plus stroma control by DYRK1B.

Oncogene

January 2025

Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.

The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!