In vitro differentiation of Runx3-/- p53-/- gastric epithelial cells into intestinal type cells.

Cancer Sci

Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.

Published: April 2008

We have reported that a lack of RUNX3 function is causally associated with gastric carcinogenesis. We have also presented evidence that loss of Runx3 may be related to the genesis of intestinal metaplasia because expression of RUNX3 is reduced in some intestinal metaplasias, and some Runx3(-/-)p53(-/-) gastric epithelial cells differentiate into intestinal type cells in vivo. Recently several reports have indicated that blood cells play important roles in the gastric carcinogenesis. In the present study, we therefore examined whether Runx3(-/-)p53(-/-) gastric epithelial cells differentiate autonomously into intestinal type cells, or whether the presence of other cells is necessary for the differentiation in vitro. When Runx3(-/-)p53(-/-) gastric epithelial cells were cultured with collagen gels, they did not exhibit any morphogenesis and differentiated poorly. When cultured with fetal mouse gastric mesenchymes, the cells formed glandular structures and differentiated into surface mucous cells, but differentiation of intestinal type cells was never observed. When cultured with Matrigel, the cells formed glandular structures, and some cells differentiated into intestinal type cells in vitro. Reverse transcription-polymerase chain reaction analysis showed that the cells expressed stomach-specific genes, and their levels decreased gradually during the culture. The cells expressed some intestine-specific genes weakly at the start of culture, and their levels were increased with time in culture. We therefore conclude that Runx3(-/-)p53(-/-) gastric epithelial cells differentiate into intestinal type cells in combination with Matrigel in the absence of other cell types. Extracellular matrix, not blood cells, may play a role in the genesis of intestinal metaplasia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160005PMC
http://dx.doi.org/10.1111/j.1349-7006.2008.00732.xDOI Listing

Publication Analysis

Top Keywords

intestinal type
24
type cells
24
gastric epithelial
20
cells
20
epithelial cells
20
runx3-/-p53-/- gastric
16
cells differentiate
12
intestinal
9
gastric
8
gastric carcinogenesis
8

Similar Publications

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

Introduction: Type 2 diabetes mellitus (T2DM) often leads to elevated blood glucose levels and lipid metabolism disorder, which is generally accompanied by dysbiosis of gut microbiota and metabolic dysfunction.

Methods: In this study, a mouse model of T2DM was established by feeding a high-fat/sucrose diet combined with injecting a low dose of streptozotocin. The aim of this study was to analyze the regulatory effect of Suaeda salsa extract (SSE) on T2DM and its effect on the intestinal flora of mice.

View Article and Find Full Text PDF

Background: Perianal fistula refers to an abnormal connection between the anal canal and the perianal skin or perineum. Magnetic Resonance Imaging (MRI) plays a crucial role in accurately characterizing perianal fistulas, which informs surgical strategies and helps minimize recurrence.

Methods: This cross-sectional study was conducted at a single diagnostic imaging center in Addis Ababa, utilizing retrospectively collected data from May 2023 to June 2024.

View Article and Find Full Text PDF

Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel.

View Article and Find Full Text PDF

ICEmST contributes to colonization of Salmonella in the intestine of piglets.

Sci Rep

December 2024

Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!