The vertebrate dmrt gene family encodes transcription factors with a characteristic DNA-binding motif called the DM domain. The best studied member is dmrt1, which is involved in sexual development in fish and tetrapods. The cloning of dmrt5 from the platyfish Xiphophorus maculatus and the expression pattern of dmrt1, dmrt2a, dmrt4, and dmrt5 in adults and embryos are reported. Consistent with a role in sexual development, platyfish dmrt1 is expressed exclusively in adult testis. Interestingly, dmrt1 expression was detected in both spermatogonia and Sertoli cells. This contrasts with the situation in other fish, where dmrt1 is not expressed in both types of cells, and is reminiscent of the expression observed in other vertebrates. Certain expression patterns in platyfish embryos were similar to those found in other vertebrates, suggesting conserved functions of dmrt genes in vertebrate development. This was the case for dmrt2a/terra and dmrt4, presenting expression patterns compatible with roles in somitogenesis and olfactory system development, respectively. However, differences in expression during embryogenesis and in adult tissues were observed not only between fish and tetrapods, but also between fish species, illustrating the possible functional divergence of this gene family in fish and other vertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1089/zeb.2006.3.325DOI Listing

Publication Analysis

Top Keywords

dmrt genes
8
platyfish xiphophorus
8
xiphophorus maculatus
8
gene family
8
sexual development
8
fish tetrapods
8
dmrt1 expressed
8
expression patterns
8
expression
6
dmrt1
5

Similar Publications

Evolutionary insights and expression patterns of sex-related gene families in the zig-zag eel Mastacembelus armatus.

Comp Biochem Physiol A Mol Integr Physiol

January 2025

Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China. Electronic address:

The zig-zag eel exhibits both sexual dimorphism and sex reversal, making it crucial to understand the mechanisms of sex determination and differentiation. Additionally, the wild populations of the zig-zag eel are significantly declining, emphasizing the need for urgent conservation efforts. In this study, we identified 7 Dmrt, 62 HMG-box, and 73 TGF-β family members in the zig-zag eel genome.

View Article and Find Full Text PDF

Molecular characterization of doublesex and Mab-3 (DMRT) gene family in Ctenopharyngodon idella (grass carp).

J Appl Genet

November 2024

Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China.

Doublesex and Mab-3 (DMRT) gene family is a diverse group of transcriptional factors crucially involved in sex differentiation and biological processes such as body growth and differentiation in vertebrates. In this study, we analyzed DMRT genes structural characterization and physiochemical properties, and elucidated their functional role as a ligand of different gonadal receptors including androgen (AR), estrogen β (ER-β), estrogen γ (ER-γ), and progesterone (PR). All six genes of the DMRT gene family in grass carp (Ctenopharyngodon Idella Valenciennes, 1844) exhibited an acidic nature.

View Article and Find Full Text PDF

Diversity of transactivation regions of DMRT1 in vertebrates.

Mol Biol Rep

October 2024

Department of Bioscience, School of Science, Kitasato University, Sagamihara, 252-0373, Japan.

Background: Doublesex and mab-3 related transcription factor (DMRT) 1, commonly found in all vertebrates, regulates the transcription of genes involved in the masculinization and maintenance of gonadal somatic cells and/or germline cell development. DMRT1 has a DNA-binding domain called the DM domain and a transcription regulatory region. Unlike the former, there is little knowledge about the latter transcription regulatory region.

View Article and Find Full Text PDF

miR-34 negatively regulates the expression of Dmrt and related genes in the testis of mud crab Scylla paramamosain.

Comp Biochem Physiol B Biochem Mol Biol

January 2025

State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China. Electronic address:

The mud crab (Scylla paramamosain) is a commercially significant marine decapod crustacean. Due to its obvious sexual dimorphism, the mechanism of sex differentiation and gonadal development has attracted significant research interest. The Dmrt (double-sex and mab-3 related transcription factor) genes are vital in animal gonadal development and sex differentiation.

View Article and Find Full Text PDF

Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome.

Zoological Lett

June 2024

Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa, 223-8522, Japan.

Background: In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!