A large proportion of rainfall in dryland ecosystems is intercepted by plant foliage and is generally assumed to evaporate to the atmosphere or drip onto the soil surface without being absorbed. We demonstrate foliar absorption of intercepted rainfall in a widely distributed, continental dryland, woody-plant genus: Juniperus. We observed substantial improvement in plant water status, exceeding 1.0 MPa water potential for drought-stressed plants, following precipitation on an experimental plot that excluded soil water infiltration. Experiments that wetted shoots with unlabeled and with isotopically labeled water confirmed that water potential responded substantially to foliar wetting, that these responses were not attributable to re-equilibration with other portions of the xylem, and that magnitude of response increased with water stress. Foliar absorption is not included in most ecological, hydrological, and atmospheric models; has implications for interpreting plant isotopic signatures; and not only supplements water acquisition associated with increases in soil moisture that follow large or repeated precipitation events, but also enables plants to bypass soil water uptake and benefit from the majority of precipitation events, which wet foliage but do not increase soil moisture substantially. Foliar absorption of intercepted water could be more important than previously appreciated, especially during drought when water stress is greatest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/07-0437.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!