Characterization of Drosophila melanogaster JmjC+N histone demethylases.

Nucleic Acids Res

Institute of Molecular Biology of Barcelona, CSIC, Institute for Research in Biomedicine (IRB Barcelona), Parc Científic de Barcelona, Josep Samitier, 1-5, 08028 Barcelona, Spain.

Published: May 2008

In this article, we characterize histone demethylase activity of the entire family of JmjC+N proteins of Drosophila melanogaster. Our results show that Lid (little imaginal discs), which is structurally homologous to JARID1, demethylates H3K4me3. However, contrary to what would be inferred from its demethylase activity, lid contributes to the establishment of transcriptionally competent chromatin states as: (i) is required for histone H3 acetylation; (ii) contributes to expression of the homoeotic gene Ultrabithorax (Ubx); and (iii) antagonizes heterochromatin-mediated gene silencing (PEV). These results, which are consistent with the identification of lid as a trithorax group (trxG) gene, are discussed in the context of current models for the contribution of H3K4me3 to the regulation of gene expression. Here, we also show that the two Drosophila JMJD2 homologues, dJMJD2(1)/CG15835 and dJMJD2(2)/CG33182, are capable of demethylating both H3K9me3 and H3K36me3. dJMJD2(1)/CG15835 regulates heterochromatin organization, as its over-expression induces spreading of HP1, out of heterochromatin, into euchromatin, without affecting the actual pattern of histone modifications of heterochromatin. dJMJD2(1)/CG15835 is excluded from heterochromatin and localizes to multiple euchromatic sites, where it regulates H3K36 methylation. These results indicate that dJMJD2(1)/CG15835 contributes to delimit hetero- and euchromatic territories through the regulation of H3K36 methylation in euchromatin. On the other hand, dJARID2/CG3654 shows no demethylase activity on H3K4me3, H3K9me3, H3K27me3, H3K36me3 and H4K20me3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396428PMC
http://dx.doi.org/10.1093/nar/gkn098DOI Listing

Publication Analysis

Top Keywords

demethylase activity
12
drosophila melanogaster
8
h3k36 methylation
8
characterization drosophila
4
melanogaster jmjc+n
4
histone
4
jmjc+n histone
4
histone demethylases
4
demethylases article
4
article characterize
4

Similar Publications

Dual targeting PPARα and NPC1L1 metabolic vulnerabilities blocks tumorigenesis.

Cancer Lett

January 2025

Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:

Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.

View Article and Find Full Text PDF

Synthesis and Antifungal Activity of Fmoc-Protected 1,2,4-Triazolyl-α-Amino Acids and Their Dipeptides Against Species.

Biomolecules

January 2025

Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy.

In recent years, fungal infections have emerged as a significant health concern across veterinary species, especially in livestock such as cattle, where fungal diseases can result in considerable economic losses, as well as in humans. In particular, species, notably and , are opportunistic pathogens that pose a threat to both animals and humans. This study focuses on the synthesis and antifungal evaluation of novel 9-fluorenylmethoxycarbonyl (Fmoc)-protected 1,2,4-triazolyl-α-amino acids and their dipeptides, designed to combat fungal pathogens.

View Article and Find Full Text PDF

Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer.

View Article and Find Full Text PDF

Mucormycosis, a life-threatening fungal infection caused by Mucorales, affects immunocompromised patients, especially SARS-CoV-2 ones. Existing antifungal therapies, like amphotericin B, have serious health risks. The current study reviews the literature regarding an overview of SARS-CoV-2-associated mucormycosis, along with different terpenes from diverse edible sources such as basil, ginger, and clove, which are detected till June 2024.

View Article and Find Full Text PDF

Background: The search for new antifungal agents is critical due to the rising resistance of fungal pathogens to existing treatments. This study focuses on the synthesis and evaluation of a novel compound, 1-benzyl-5-methyl-1H-pyrazole-3-carboxylic acid (compound L1), as a potential antifungal agent.

Methods: Compound L1 was synthesized and characterized using a range of analytical techniques, including 1H^1H1H NMR, 13C^{13}C13C NMR, FT-IR, GC-MS, and X-ray single crystal diffraction (XRD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!