The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2395036 | PMC |
http://dx.doi.org/10.1128/JB.01981-07 | DOI Listing |
Pest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFFoods
December 2024
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
Leaf senescence is a major concern for postharvest leafy vegetables, as leaves are highly prone to yellowing and nutrient loss, resulting in reduced commercial value and limited shelf-life. This study aimed to investigate the effect of L-cysteine (L-cys) on postharvest Chinese flowering cabbage stored at 20 °C. The results showed that 0.
View Article and Find Full Text PDFFoods
December 2024
Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.
Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!