Objectives: Oligodontia is defined as the congenital absence of 6 or more permanent teeth excluding the third molar. The occurrence of non-syndromic still remains poorly understood, but in recent years some cases have been reported where mutations or polymorphisms of PAX9 and MSX1 had been associated with non-syndromic oligodontia. The objective of the present work was to study the phenotype and genotype of three generations of a Han Chinese family affected by non-syndromic autosomal-dominant oligodontia.

Design: We examined all individuals of the oligodontia family by clinical and radiographic examinations. Based on clinical manifestations, candidate genes MSX1 and PAX9 were picked up to analyse and screen mutations.

Results: Dental evaluation showed that the most commonly missing teeth are the mandibular second premolars, followed by the maxillary second premolars and maxillary lateral incisors, and subsequently the maxillary first premolars. The probability of missing a particular type of tooth is not always bilaterally symmetrical, and differences exist between maxilla and mandible. PCR-SSCP analysis and DNA sequencing revealed a novel missense mutation c.662C>A in a highly conserved homeobox sequence of MSX1 and a known polymorphisms c.347C>G.

Conclusion: Our finding suggests the missense transversion (c.662C>A) and the polymorphisms (c.347C>G) may be responsible for oligodontia phenotype in this Chinese family.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archoralbio.2008.02.012DOI Listing

Publication Analysis

Top Keywords

chinese family
12
novel missense
8
missense mutation
8
second premolars
8
premolars maxillary
8
oligodontia
5
identification novel
4
msx1
4
mutation msx1
4
msx1 gene
4

Similar Publications

Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.

View Article and Find Full Text PDF

Life History Strategies of the Winter Annual Plant (Asteraceae) in a Cold Desert Population.

Plants (Basel)

January 2025

Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Donggang West Road, Lanzhou 730000, China.

Turcz. is a winter annual species of the Asteraceae family, distributed in sandy areas of northern China, and is crucial for wind avoidance and sand fixation. To understand the inter- and intra-annual population dynamics of in its cold desert habitats, we conducted long- and short-term demographic studies to investigate the timing of germination, seedling survival, soil seed bank and seed longevity of natural populations on the fringe of the Tengger Desert.

View Article and Find Full Text PDF

The trichomes of mustard leaves have significance due to their ability to combat unfavorable external conditions and enhance disease resistance. It was demonstrated that the MYB-bHLH-WD40 (MBW) ternary complex consists of MYB, basic Helix-Loop-Helix (bHLH), and WD40-repeat (WD40) family proteins and plays a key role in regulating trichome formation and density. The bHLH gene family, particularly the Myelocytomatosis (MYC) proteins that possess the structural bHLH domain (termed bHLH-MYC), are crucial to the formation and development of leaf trichomes in plants.

View Article and Find Full Text PDF

Unveiling the Role of in Cotton Salt Stress Tolerance: A Comprehensive Genomic and Functional Analysis of Genes.

Plants (Basel)

January 2025

Institute of Modern Agriculture, School of Life Sciences, Nantong University, Nantong 226019, China.

Proline, a critical osmoregulatory compound, is integral to various plant stress responses. The gene, which encodes the rate-limiting enzyme in proline biosynthesis, known as ∆1-pyrroline-5-carboxylate synthetase, is fundamental to these stress response pathways. While the functions of genes in plants have been extensively documented, their specific roles in cotton remain inadequately characterized.

View Article and Find Full Text PDF

Integrative Omics Analysis Reveals Mechanisms of Anthocyanin Biosynthesis in Djulis Spikes.

Plants (Basel)

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.

Djulis ( Koidz.), a member of the family plant, is noted for its vibrant appearance and significant ornamental value. However, the mechanisms underlying color variation in its spikes remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!