Objective: Beta-adrenergic receptor desensitization through activation of the G protein-coupled receptor kinase 2 is an important mechanism of early cardiac dysfunction after brain death. We hypothesized that acute beta-blockade can prevent myocardial beta-adrenergic receptor desensitization after brain death through attenuation of G protein-coupled receptor kinase 2 activity, resulting in improved cardiac function.

Methods: Adult pigs underwent either sham operation, induction of brain death, or treatment with esmolol (beta-blockade) for 30 minutes before and 45 minutes after brain death (n = 8 per group). Cardiac function was assessed at baseline and for 6 hours after the operation. Myocardial beta-adrenergic receptor signaling was assessed 6 hours after operation by measuring sarcolemmal membrane adenylate cyclase activity, beta-adrenergic receptor density, and G protein-coupled receptor kinase 2 expression and activity.

Results: Baseline left ventricular preload recruitable stroke work was similar among sham, brain death, and beta-blockade groups. Preload recruitable stroke work was significantly decreased 6 hours after brain death versus sham, and beta-blockade resulted in maintenance of baseline preload recruitable stroke work relative to brain death and not different from sham. Basal and isoproterenol-stimulated adenylate cyclase activities were preserved in the beta-blockade group relative to the brain death group and were not different from the sham group. Left ventricular G protein-coupled receptor kinase 2 expression and activity in the beta-blockade group were markedly decreased relative to the brain death group and similar to the sham group. Beta-adrenergic receptor density was not different among groups.

Conclusion: Acute beta-blockade before brain death attenuates beta-adrenergic receptor desensitization mediated by G protein-coupled receptor kinase 2 and preserves early cardiac function after brain death. These data support the hypothesis that acute beta-adrenergic receptor desensitization is an important mechanism in early ventricular dysfunction after brain death. Future studies with beta-blocker therapy immediately after brain death appear warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2007.09.038DOI Listing

Publication Analysis

Top Keywords

brain death
56
beta-adrenergic receptor
32
receptor desensitization
20
protein-coupled receptor
20
receptor kinase
20
brain
14
death
14
receptor
13
acute beta-blockade
12
myocardial beta-adrenergic
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!