A key strategy to achieve regulated gene expression in higher eukaryotes is to prevent illegitimate signal-independent activation by imposing robust control on the dismissal of corepressors. Here, we report that many signaling pathways, including Notch, NF-kappaB, and nuclear receptor ligands, are subjected to a dual-repression "checkpoint" based on distinct corepressor complexes. Gene activation requires the release of both CtBP1/2- and NCoR/SMRT-dependent repression, through the coordinate action of two highly related exchange factors, the transducer beta-like proteins TBL1 and TBLR1, that license ubiquitylation and degradation of CtBP1/2 and NCoR/SMRT, respectively. Intriguingly, their function and differential specificity reside in only five specific Ser/Thr phosphorylation site differences, regulated by direct phosphorylation at the level of the promoter, as exemplified by the role of PKCdelta in TBLR1-dependent dismissal of NCoR. Thus, our data reveal a strategy of dual-factor repression checkpoints, in which dedicated exchange factors serve as sensors for signal-specific dismissal of distinct corepressors, with specificity imposed by upstream signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2364611PMC
http://dx.doi.org/10.1016/j.molcel.2008.01.020DOI Listing

Publication Analysis

Top Keywords

tbl1 tblr1
8
regulated gene
8
repression checkpoints
8
signaling pathways
8
exchange factors
8
tblr1 phosphorylation
4
phosphorylation regulated
4
gene promoters
4
promoters overcomes
4
overcomes dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!