Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2008.02.011DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
qcm sensor
8
sensor surfaces
8
imprinted nanoparticles
8
quartz crystal
8
crystal microbalance
8
pet layer
8
characterization qcm
4
surfaces
4
surfaces coated
4

Similar Publications

A sensitive and efficient fluorescent sensor based on a magnetic manganese-doped zinc sulfide molecularly imprinted probe (FeO/Mn-ZnS/MIP) was successfully developed for the detection of chlorpyrifos (CPF). The probe combined the advantages of magnetic separation, the fluorescence properties of Mn-ZnS, and the exceptional molecule recognition capabilities of molecularly imprinted polymers. The developed sensor exhibits selective binding to CPF, resulting in a quenching of fluorescence intensity of FeO/Mn-ZnS/MIP by a photo-induced electron transfer mechanism.

View Article and Find Full Text PDF

In this work, Waste pine nut shells were used as organic carbon source of biomass to synthesize carbon quantum dots. A highly responsive and selective fluorescent nanosensor (Si-doped biomass-derived carbon dots with molecular imprinted polymers, Si-CDs@MIPs) was designed for determination of Rutin (RT) in Chinese herbal substances like Sophora japonica L..

View Article and Find Full Text PDF

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

An antibody-free bio-layer interferometry biosensor for immunoglobulin G1 detection in human serum by using molecularly imprinted polynorepinephrine.

Biosens Bioelectron

December 2024

Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:

Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.

View Article and Find Full Text PDF

A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis.

Biosensors (Basel)

November 2024

Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.

Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!