Alpha-glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats.

Carbohydr Res

Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States.

Published: May 2008

Syzygium cumini seed kernel extracts were evaluated for the inhibition of alpha-glucosidase from mammalian (rat intestine), bacterial (Bacillus stearothermophilus), and yeast (Saccharomyces cerevisiae, baker's yeast). In vitro studies using the mammalian alpha-glucosidase from rat intestine showed the extracts to be more effective in inhibiting maltase when compared to the acarbose control. Since acarbose is inactive against both the bacterial and the yeast enzymes, the extracts were compared to 1-deoxynojirimycin. We found all extracts to be more potent against alpha-glucosidase derived from B. stearothermophilus than that against the enzymes from either baker's yeast or rat intestine. In an in vivo study using Goto-Kakizaki (GK) rats, the acetone extract was found to be a potent inhibitor of alpha-glucosidase hydrolysis of maltose when compared to untreated control animals. Therefore, these results point to the inhibition of alpha-glucosidase as a possible mechanism by which this herb acts as an anti-diabetic agent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2008.03.003DOI Listing

Publication Analysis

Top Keywords

rat intestine
12
syzygium cumini
8
seed kernel
8
goto-kakizaki rats
8
inhibition alpha-glucosidase
8
baker's yeast
8
alpha-glucosidase
6
alpha-glucosidase inhibitory
4
inhibitory activity
4
activity syzygium
4

Similar Publications

Purpose: To study the potential of a candidate probiotic strain belonging to the Enterococcus durans species in alleviating hypercholesterolemia and improving the microbial milieu of rat gut.

Methods: A previously isolated and characterized E. durans strain NPL 1334 was further screened in vitro for its bile salt hydrolyzation and cholesterol assimilation ability.

View Article and Find Full Text PDF

Development and Validation of a Minimally Invasive Transuterine Experimental Model of Gastroschisis.

J Pediatr Surg

January 2025

The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA. Electronic address:

Introduction: Perinatal management of gastroschisis remains a subject of substantial research. Current models, including teratogenic, genetic, and surgical approaches, often fail to accurately replicate gastroschisis, exhibiting limitations such as inaccurate phenotyping, low success rates, high mortality, lack of scientific validation, and significant technical challenges. Refined disease models are essential for improving the understanding of GS.

View Article and Find Full Text PDF

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

Biomimetic wrinkled prebiotic microspheres with enhanced intestinal retention for hyperphosphatemia and vascular calcification.

Sci Adv

January 2025

Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.

It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.

View Article and Find Full Text PDF

An Acellular Platform to Drive Urinary Bladder Tissue Regeneration.

Adv Ther (Weinh)

January 2025

Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.

Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!