The aim of present study was to investigate functional and physical alterations in membranes of heart mitochondria that are associated with remodeling of these organelles in acute phase of streptozotocin-induced diabetes and to elucidate the role of these changes in adaptation of the heart to acute streptozotocin-induced diabetes (evaluated 8 days after single dose streptozotocin application to male Wistar rats). Action of free radicals on the respiratory chain of diabetic-heart mitochondria was manifested by 17 % increase (p<0.05) in oxidized form of the coenzyme Q(10) and resulted in a decrease of states S3 and S4 respiration, the respiratory control index, rate of phosphorylation (all p<0.01) and the mitochondrial transmembrane potential (p<0.05), but the ADP/O ratio decreased only moderately (p>0.05). On the contrary, membrane fluidity and the total mitochondrial Mg2+-ATPase activity increased (both p<0.05). In diabetic heart mitochondria, linear regression analysis revealed a reciprocal relationship between the increase in membrane fluidity and decrease in trans-membrane potential (p<0.05, r = 0.67). Changes in membrane fluidity, transmembrane potential, Mg2+-ATPase activity and the almost preserved ADP/O ratio appear as the manifestation of endogenous protective mechanisms participating in the functional remodeling of mitochondria which contributes to adaptation of the heart to diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33549/physiolres.931554 | DOI Listing |
Narra J
December 2024
Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
Pancreatic cell damage in diabetes mellitus is closely linked to inflammation and apoptosis. This study aimed to investigate the protective effects of phloroglucinol on pancreatic cells in a streptozotocin-induced diabetic model by assessing its anti- inflammatory and anti-apoptotic mechanisms. Phloroglucinol ligand and the structures of Bax, Bcl-2, and caspase-3 proteins were sourced from the PubChem database.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
September 2024
Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands.
Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFClin Nutr
January 2025
School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China. Electronic address:
Diabetic cognitive dysfunction (DCD) refers to the cognitive impairment observed in individuals with diabetes. Epidemiological studies have suggested that supplementation with n-3 polyunsaturated fatty acid (PUFA) or B vitamins may prevent the development of diabetic complications. Post hoc studies indicate a potential synergistic effect of n-3 PUFA and B vitamins in preventing cognitive impairment.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pharmacognosy, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!