Post-translational modifications (PTMs) are key to the regulation of functional activities of proteins. Quantitative and qualitative information about PTM stages of proteins is crucial in the discovery of biomarkers of disease. Recent commercial availability of fluorescent dyes specifically staining PTMs of proteins such as phosphorylation and glycosylation enables the specific detection of protein regulations taking place with respect to these modifications. Activity and molecular and signalling interactions of many proteins are determined by their extent of phosphorylation. In our search for biomarkers of neurodegenerative diseases such as Multiple Sclerosis (MS), using its animal model, Experimental autoimmune encephalomyelitis (EAE), we have applied the phopshorylation specific fluorescent dye, ProQ Diamond, to study changes taking place in the phosphoproteome. Subsequent Colloidal Coomassie staining of the same gels detects the changes at the whole proteome level. We have detected many changes taking place in the CNS tissue of the EAE animals at the whole proteome as well as at the phosphoproteome level that has given valuable insights into the patho-physiological mechanism of EAE and possibly also MS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60327-084-7_2DOI Listing

Publication Analysis

Top Keywords

post-translational modifications
8
changes place
8
detection post-translational
4
modifications fluorescent
4
fluorescent staining
4
staining two-dimensional
4
two-dimensional gels
4
gels post-translational
4
modifications ptms
4
ptms key
4

Similar Publications

Protein prenylation in mechanotransduction: implications for disease and therapy.

Trends Pharmacol Sci

January 2025

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:

The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins.

View Article and Find Full Text PDF

Background: Results of the National Lung Screening Trial create the potential to reduce lung cancer mortality, but community translation of lung cancer screening (LCS) has been challenging. Subsequent policies have endorsed informed and shared decision-making and using decision support tools to support person-centered choices about screening to facilitate implementation. This study evaluated the feasibility and acceptability of LuCaS CHOICES, a web-based decision aid to support delivery of accurate information, facilitate communication skill development, and clarify personal preferences regarding LCS-a key component of high-quality LCS implementation.

View Article and Find Full Text PDF

Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!