The muscle transcription factor MyoD promotes osteoblast differentiation by stimulation of the Osterix promoter.

Endocrinology

Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA 30033, USA.

Published: July 2008

Transcription factors regulate tissue-specific differentiation of pluripotent mesenchyme to osteoblast (OB), myoblast (MB), and other lineages. Osterix (Osx) is an essential transcription factor for bone development because knockout results in lack of a mineralized skeleton. The proximal Osx promoter contains numerous binding sequences for MyoD and 14 repeats of a binding sequence for Myf5. These basic helix-loop-helix (bHLH) transcription factors have a critical role in MB differentiation and muscle development. We tested the hypothesis that bHLH transcription factors also support OB differentiation through regulation of Osx. Transfection of a MyoD expression vector into two primitive mesenchymal cell lines, C3H/10T1/2 and C2C12, stimulated a 1.2-kb Osx promoter-luciferase reporter 70-fold. Myf5 stimulated the Osx promoter 6-fold. Deletion analysis of the promoter revealed that one of three proximal bHLH sites is essential for MyoD activity. The Myf5 repeat conferred 60% of Myf5 activity with additional upstream sequence required for full activity. MyoD bound the active bHLH sequence and its 3'-flanking region, as shown by EMSA and chromatin immunoprecipitation assays. Real-time PCR revealed that primitive C2C12 and C3H/10T1/2 cells, pre-osteoblastic MC3T3 cells, and undifferentiated primary marrow stromal cells express the muscle transcription factors. C2C12 cells, which differentiate to MB spontaneously and form myotubules, were treated with bone morphogenetic protein 2 (BMP-2) to induce OB differentiation. BMP-2 stimulated expression of Osx and the differentiation marker alkaline phosphatase and blocked myotubule development. BMP-2 suppressed the muscle transcription factor myogenin, but expression of MyoD and Myf5 persisted. Silencing of MyoD inhibited BMP-2 stimulation of Osx and blocked the later appearance of bone alkaline phosphatase. MyoD support of Osx transcription contributes to early OB differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2007-1556DOI Listing

Publication Analysis

Top Keywords

transcription factors
16
muscle transcription
12
transcription factor
12
myod
8
osx
8
osx promoter
8
bhlh transcription
8
alkaline phosphatase
8
differentiation
7
transcription
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!