Introduction: Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasma membrane. Discerning how this integrated network operates is essential for understanding cytokinesis contractility and shape control. Here, we analyzed the cytoskeletal network that drives furrow ingression in Dictyostelium.
Results: We establish that the actin polymers are assembled into a meshwork and that myosin-II does not assemble into a discrete ring in the Dictyostelium cleavage furrow of adherent cells. We show that myosin-II generates regional mechanics by increasing cleavage furrow stiffness and slows furrow ingression during late cytokinesis as compared to myoII nulls. Actin crosslinkers dynacortin and fimbrin similarly slow furrow ingression and contribute to cell mechanics in a myosin-II-dependent manner. By using FRAP, we show that the actin crosslinkers have slower kinetics in the cleavage furrow cortex than in the pole, that their kinetics differ between wild-type and myoII null cells, and that the protein dynamics of each crosslinker correlate with its impact on cortical mechanics.
Conclusions: These observations suggest that myosin-II along with actin crosslinkers establish local cortical tension and elasticity, allowing for contractility independent of a circumferential cytoskeletal array. Furthermore, myosin-II and actin crosslinkers may influence each other as they modulate the dynamics and mechanics of cell-shape change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2361134 | PMC |
http://dx.doi.org/10.1016/j.cub.2008.02.056 | DOI Listing |
Genome
January 2025
Dalhousie University, Biology, Halifax, Nova Scotia, Canada;
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States.
Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales.
View Article and Find Full Text PDFStem cells adapt to their local mechanical environment by rearranging their cytoskeleton, which underpins the evolution of their shape and fate as well as the emergence of tissue structure and function. Here, in the second part of a two-part experimental series, we aimed to elucidate spatiotemporal cytoskeletal remodeling and resulting changes in morphology and mechanical properties of cells and their nuclei. Akin to mechanical testing of the most basic living and adapting unit of life, i.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!