Secondary phase precipitates of a Zircaloy sample have been characterised by X-ray microspectroscopy. In Zircaloy-2 X-ray microscopy reveals pictures with a 40 nm resolution identifying Fe, Cr and to a lower occurrence Ni phases up to size of the micrometer. Analysis by X-ray spectroscopy defines the structure of specific secondary phase precipitates. The feasibility tests demonstrate that the characterisation of Fe and Cr can be performed on 100 nm size phases allowing the analysis of the Fe or Cr atoms environment in these secondary phase precipitates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2007.11.052DOI Listing

Publication Analysis

Top Keywords

secondary phase
16
phase precipitates
12
analysis x-ray
8
x-ray microspectroscopy
8
zircaloy-2 secondary
4
phase
4
phase precipitate
4
precipitate analysis
4
x-ray
4
microspectroscopy secondary
4

Similar Publications

Background: Educational research highlights active approaches to learning are more effective in knowledge retention and problem-solving. It has long been acknowledged that adapting to more active ways of learning form part of the challenge for new university students as the pedagogical distance between the didactical approach largely followed by secondary school systems the world over differs quite significantly from the often more student-led, critical approach taken by universities. University students encounter various learning challenges, particularly during the transition from secondary school to university.

View Article and Find Full Text PDF

Background: Although existing COVID-19 vaccines are known to be highly effective against severe disease and death, data are needed to assess their ability to reduce SARS-CoV-2 infection. We aimed to estimate the efficacy of the NVX-CoV2373 protein subunit vaccine against SARS-CoV-2 infection, regardless of symptoms, among adolescents.

Methods: We performed an ancillary observational study (SNIFF) to the phase 3, observer-blinded, randomised, placebo-controlled PREVENT-19 trial that assessed vaccine efficacy against symptomatic COVID-19 in the USA.

View Article and Find Full Text PDF

Background: Monovalent biologics blocking thymic stromal lymphopoietin or interleukin-13 have been shown to elicit pharmacodynamic responses in asthma following a single dose. Therefore, dual blockade of these cytokines may result in an enhanced response compared to single targeting and has the potential to break efficacy ceilings in asthma. This study assessed the safety and tolerability of lunsekimig, a bispecific NANOBODY molecule that blocks thymic stromal lymphopoietin and interleukin-13, and its effect on Type 2 inflammatory biomarkers and lung function in asthma.

View Article and Find Full Text PDF

sgRNA Single-Nucleotide Resolution by Ion-Pairing Reversed-Phase Chromatography.

Anal Chem

January 2025

Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States.

Single-stranded guide RNAs (sgRNAs) are important therapeutic modalities that facilitate selective genome editing by the CRISPR/Cas9 system. While these therapeutic modalities are synthesized through solid phase oligonucleotide synthesis similar to small interfering RNA (siRNAs) and antisense oligonucleotide (ASOs) therapeutics, their sequence length and complex secondary and tertiary structure hinder analytical characterization. The resulting current sgRNA methodologies have limited chromatographic selectivity near the FLP and limited MS compatibility.

View Article and Find Full Text PDF

Background: Melanoma, a highly aggressive skin cancer is frequently driven by the BRAF mutation. Vemurafenib initially offers clinical benefits but often encounters resistance due to secondary mutations and compensatory signaling pathways. Targeting p300, a histone acetyltransferase involved in transcriptional regulation and resistance mechanisms, presents a potential strategy to overcome this therapeutic challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!