Generally speaking, measurement of hydroxylated radical products of salicylic acid requires a fussy separation process. In this study, we describe a simple method to electrochemically detect hydroxyl radicals (*OH) using 4-hydroxybenzoic acid (4-HBA) as the *OH trap. The *OH is generated by the Fenton reaction from iron (II) sulfate and hydrogen peroxide in a phosphate buffer solution. Experimental results show that our method can detect the OH with high sensitivity without any separation process. The differential pulse voltammetric responses show a linear dependence on the concentration of *OH in a range of 2.0x10(-6) and 1.0x10(-3)M with a determination limit down to 5.0x10(-7)M. As a demonstration, the kinetics of the Fenton reaction was mapped by measuring the reaction product of hydroxyl radical trapped by 4-HBA. The result is in good agreement with that reported previously. All the results show that the present approach could provide a simple, inexpensive and promising method for biomedicine and iatrology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2007.07.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!