An optical fiber biosensor consisting of acetylcholinesterase (AChE) and bromothymol blue (BTB) doped sol-gel film was employed to detect organophosphate pesticide chlorpyrifos. The main advantage of this optical biosensor is the use of a single sol-gel film with immobilized AChE and BTB. The compatibility of this mixture (AChE and BTB) with the sol-gel matrix has prevented leaching of the film. The immobilization of the enzyme and indicator was simple without chemical modification. The biosensing element on single sol-gel film has been placed inside the flow-cell for flow system. In the presence of a constant AChE, a color change of the BTB and the measured reflected signal at wavelength 622nm could be related to the pesticide concentration in the sample solutions. The performance of optical biosensor in the flow system has been optimized, including chemical and physical parameters. The response time of the biosensor is 8min. A linear calibration curve of chlorpyrifos against the percentage inhibition of AChE was obtained from 0.05 to 2.0mg/L of chlorpyrifos (18-80% inhibition, R(2)=0.9869, n=6). The detection limit for chlorpyrifos was 0.04mg/L. The results of the analysis of 0.5-1.5mg/L of chlorpyrifos using this optical biosensor agreed well with chromatographic method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2007.06.042 | DOI Listing |
Sci Rep
January 2025
Centre for Advanced Devices and Systems, Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100, Cyberjaya, Selangor, Malaysia.
In recent decades, poorly insulated windows have increased the energy consumption of heating and cooling systems, thus contributing to excessive carbon dioxide emissions and other related pollution issues. From this perspective, the electrochromic (EC) windows could be a tangible solution as the indoor conditions are highly controllable by these smart devices even at a low applied voltage. Literally, vanadium pentoxide (VO) is a renowned candidate for the EC application due to its multicolor appearance and substantial lithium insertion capacity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Science, Inner Mongolia University of Technology, Hohhot 010051, China.
Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.
View Article and Find Full Text PDFGels
December 2024
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria.
The study investigates the development and characterization of dual-loaded niosomes incorporated into ion-sensitive in situ gel as a potential drug delivery platform for ophthalmic application. Cannabidiol (CBD) and epigallocatechin-3-gallate (EGCG) simultaneously loaded niosomes were prepared via the thin film hydration (TFH) method followed by pulsatile sonication and were subjected to comprehensive physicochemical evaluation. The optimal composition was included in a gellan gum-based in situ gel, and the antimicrobial activity, in vitro toxicity in a suitable corneal epithelial model (HaCaT cell line), and antioxidant potential of the hybrid system were further assessed.
View Article and Find Full Text PDFLangmuir
December 2024
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
In this work, a bilayer lead-free perovskite ferroelectric structure was fabricated comprising a highly polar BiFeO (BFO) bottom layer and a less polar (KNa)NbO (KNN) top layer. The BFO sublayer, deposited via radio frequency magnetron sputtering without postgrowth annealing, not only exhibited enhanced crystallinity but also promoted superior microstructural properties in the sol-gel derived KNN overlayer, thereby ensuring excellent intrinsic electrical properties. Compared to the poorly crystallized single-layer KNN films directly synthesized on LNO-buffered (100)-Si substrate, the KNN layer in the bilayer structure demonstrated a strong (100) texture, along with a dense, homogeneous, fine-grained morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!